Passive and active acoustic properties of a diaphragm at low Mach number
Experimental procedure and numerical simulation
DOI:
https://doi.org/10.13052/EJCM.20.49-71Keywords:
scattering matrix, flow noise, aero-acoustic source, diaphragmAbstract
In this paper a low noise flow duct facility that performs a multimodal characterization of the passive and active acoustic properties of obstacles in the aero-acoustic conditions of an automotive air conditioning system is presented. The experimental procedure is made of two steps. In the first one the passive data, i.e. the multimodal scattering matrix, is measured with a multi-sources method. In the second step the outgoing modal pressure spectra radiated upstream and downstream by the flow obstacle interaction source is achieved. A numerical simulation of the experiment based on a 3D-Finite Element Method is developed. A very good agreement between the theoretical and experimental results of the no flow scattering matrix of a diaphragm is found. The effect of the flow on the scattering matrix is shown before performing the measurement of the aero-acoustic source characteristics of the diaphragm.
Downloads
References
Aböm M., Bodèn H., Lavrentjev J., “Source characterization of fans using acoustic 2-port
models”, Proceedings of fan Noise 92, France, 1992, p. 359-364.
Allam S., Aböm M., “Advanced experimental procedure for in-duct aero-acoustics”, ICSV13,
Vienna, 2-6 July 2006, Austria.
Amestoy P.-R., Duff I.-S., Koster J., L’Excellent J.-Y., Pralet S., MUltifrontal Massively
Parallel Solver, MUMPS 4.9, User's guide CERFACS, ENSEEIHT, 2009.
Bonnet-Ben Dhia A.S., et al.,. « Condition aux limites transparente pour la propagation
acoustique dans un guide recouvert d'un matériau absorbant en présence d'écoulement
uniforme », 18e Congrees of mecanic, Grenoble, France, 2007.
Drissi D., Simulation des silencieux d'échappement par une méthode d'éléments finis
homogénéisée, Thèse de doctorat, Université de Tunis, 2003.
Durrieu D., Hofmans G., Ajello G., Boot R., Aurégan Y., Hirschberg A., Peters M.,
“Quasisteady aero-acoustic response of orifices”, J. Acoust. Soc. Am, vol. 110, n° 4, 2001,
p. 517-531.
Hamdi M.A., Mebarek L., User’s guide for RAYON-Ideas Vibro-Acoustic, 1998.
Hofmans G., Ranucci M., Ajello G., Aurégan Y., Hirschberg A., “Aeroacoustic response of a
slit-shaped diaphragm in a pipe at low Helmholtz number, 2: Unsteady results”, Journal
of Sound and Vibration, vol. 244, n° 1, 2001, p. 57-77.
Hofmans G., Boot R., Durrieu D., Aurégan Y., Hirschberg A., “Aeroacoustic response of a
slit-shaped diaphragm in a pipe at low Helmholtz number, 1: Quasi-steady results”,
Journal of Sound and Vibration, vol. 244, n° 1, 2001, p. 35-56.
Lavrentjev J., Aböm M. “Characterisation of fluid machines as acoustic multi-port sources”,
Journal of Sound and Vibration, vol. 197, n° 1, 1996, p. 1-16.
Lavrentjev J., Aböm M., Bodèn H., “A measurement method for determining the source data
of acoustic two-port sources”, Journal of Sound and Vibration, vol. 183, n° 3, 1995,
p. 517-531.
Poirier B., Ville J.M., Maury C., Kateb M.E., “Bicylindrical model of HQ tube duct system:
Theory and comparison with experiment and finite element method”, J. Acoust. Soc. Am,
vol. 126, n° 3, 2009, p. 1151-1162.
Sitel A., Ville J.-M., Foucart F., “Multiload procedure to measure the acoustic scattering
matrix of a duct discontinuity for higher order mode propagation conditions”, J. Acoust.
Soc. Am, vol. 120, n° 5, 2006, p. 2478-2490.
Taktak M., Mesure de la matrice de diffusion d'un tronçon traité cylindrique: applications à la
mesure de son éfficacité et à la détermination de son impédance homogénéisée, Thèse de
doctorat, Université de Technologie de compiègne, 2008.
Taktak M., Ville J.M., Haddar M., Gabard G., Foucart F. “An indirect method for the
characterization of locally reacting liners”, J. Acoust. Soc. Am, vol. 127, n° 6, 2010,
p. 3548-3559.