Nonlinear transverse steady-state periodic forced vibration of 2-dof discrete systems with cubic nonlinearities
DOI:
https://doi.org/10.13052/EJCM.20.143-166Keywords:
nonlinear transverse vibration, 2-dof system, Hamilton’s principle, explicit procedure, steady-state periodic forced responseAbstract
A method based on Hamilton’s principle and spectral analysis has been applied recently to nonlinear transverse vibrations of discrete systems with cubic nonlinearities, leading to calculation of the nonlinear free modes of transverse vibration and their associated nonlinear frequencies. The objective of the present work was the extension of this method to the nonlinear forced transverse steady-state periodic response of 2-dof system leading to nonlinear frequency response function in the neighbourhood of the two modes
Downloads
References
Atmani H., Geometrically non-linear dynamic behaviour of isotropic beams hybrid composite
and homogeneous plates : New analogical and computer implemented approch to the
harmonic distorsion effect and the non linear forced response., Ph.d. thesis, Ecole Mohammadia
d’ingénieurs, Rabat, Maroc, 2005.
Atmani H. Seddouki A., Harras B., Benamar R., « A new approach to the geometrically nonlinear
dynamic behaviour of a glare 3 hybrid composite panel : Explicit analytical solutions
», Colloque International des Problèmes Non linéaires de Mécanique, Metz, France,
-26 Mai, 2004.
Azrar L., Benamar R., Potier-Ferry M., « An asymptotic-numerical method for large-amplitude
free vibrations of thin elastic plates. », Journal of Sound and vibration, vol. 220, n° 4, p. 695-
, 1999a.
Azrar L. Benamar R., White R. G., « A Semi-analytical approach to the non-linear dynamic
response problem S-S and C-C beams at large vibration amplitudes Part I : General theory
and application to the single mode approach to free and forced vibration analysis », Journal
of Sound and Vibration, vol. 244, n° 2, p. 183-207, 1999b.
Azrar L. Benamar R., White R. G., « A Semi-analytical approach to the non-linear dynamic
response problem of beams at large vibration amplitudes, Part II : multi-mode approach
to steady state forced periodic response », Journal of Sound and Vibration, vol. 255, n° 1,
p. 1-41, 2002.
Azrar R., Semi-analytical and asymptotic-numerical methodes for non-lineair vibrations. Application
to large amplitude vibrations of beams and plates, Ph.d. thesis, Ecole Mohammadia
d’Ingénieurs Rabat, Morocco, 1999.
Beidouri Z., Contribution a une theorie d’analyse modale non-linear. Application aux structures
continues et aux systemes discrets a non-linearités localisees, Ph.d. thesis, Ecole Mohammadia
d’ingénieurs, Rabat, Maroc, 2006.
Beidouri Z. Eddanguir A., Benamar R., « Geometrically nonlinear free transverse vibration of
-dof systems with cubic nonlinearities », 7th European conference on Structural Dynamics
- Eurodyn (E266), http ://www.isvr.soton.ac.uk/eurodyn2008, 7-9 July, 2008.
Beidouri Z. El Kadiri M., Benamar R., « Geometrically nonlinear transverse vibrations of C-SS-
S and C-S-C-S rectangular plates », International Journal of Nonlinear Mechanics, vol.
, n° 1, p. 57-77, 2006.
Benamar R., Non-linear dynamic behaviour of fully clamped beams and rectangular isotropic
and laminated plates, Ph.d. thesis, University of Southampton, England, 1990.
Benamar R. Bennouna M. M. K., White R. G., « The effects of large vibration amplitudes on the
fundamental mode shape of thin elastic structures, part I : simply supported and clampedclamped
beams. », Journal of Sound and vibration, vol. 2, n° 149, p. 179-195, 1991.
Benamar R. Bennouna M. M. K., White R. G., « The effects of large vibration amplitudes on
the mode shape and natural frequencies of thin elastic structures, part II : Fully clamped
rectangular isotropic plates », Journal of Sound and Vibration, vol. 164, n° 2, p. 295-316,
Benamar R. Bennouna M. M. K., White R. G., « The effects of large vibration amplitudes on
the mode shapes and natural frequencies of thin elastic structures, part III : fully clamped
rectangular isotropic plates-measurements of the mode shape amplitude dependence and the
spatial distribution of harmonic distortion. », Journal of Sound and vibration, vol. 3, n° 175,
p. 377-395, 1994.
Bennouna M. M. K., Non-linear dynamic behaviour of a clamped-clamped beam with consideration
of fatigue life, Ph.d. thesis, University of Southampton, England, 1982.
Chakraborty G., Mallik A., « Dynamics of a weakly non-linear periodic chain. », International
Journal of Non-linear Mechanics., vol. 36, n° 2, p. 375-389, 2001.
Eddanguir A. Beidouri Z., Benamar R., « Geometrically Nonlinear Transverse Vibrations of
Discrete Multi-Degrees of Freedom Systems with a Localised Non-Linearity », International
Journal of Mathematics and Statistics, vol. 4, n° S09, p. 73-87, 2009.
El Bikri K. Benamar R., Bennouna M. K. K., « Geometrically non-linear free vibrations of
clamped-clamped beams with an edge crack », Computers and Structures, vol. 84, n° 7,
p. 485-502, 2006.
El Bikri K. Benamar R., Bennouna M. M. K., « Geometrically non-linear free vibrations of
clamped simply supported rectangular plates. Part I : the effects of large vibration amplitudes
on the fundamental mode shape. », Computers and Structures., vol. 81, n° 20, p. 2029-
, 2003.
El Kadiri M. Benamar R., White R. G., « The non-linear free vibration of fully clamped rectangular
plates : second non-linear mode for various plate aspect aspect ratios », Sound and
vibration, vol. 2, n° 228, p. 333-358, 1999.
El Kadiri M. Benamar R., White R. G., « Improvement of the semi-analytical method, based
on Hamilton’s principle and spectral analysis, for determination of the geometrically non
El Kadiri M. Benamar R., White R. G., « Improvement of the semi-analytical method, based on
Hamilton’s principle and spectral analysis, for determination of the geometrically nonlinear
free response of thin straight structures. Part II : First and second nonlinear mode shapes of
fully clamped rectangular plates », Journal of Sound and Vibration, vol. 1, n° 257, p. 19-62,
b.
Han W., Petyt M., « Linear vibration analysis of laminated rectangular plates using the hierarchical
finite element method- I : Forced vibration analysis. », Computers and Structures,
vol. 4, n° 61, p. 713-724, 1996a.
Han W., Petyt M., « Linear vibration analysis of laminated rectangular plates using the hierarchical
finite element method- I : Free vibration analysis. », Computers and Structures, vol.
, n° 61, p. 705-712, 1996b.
Harras B. Benamar R., White R. G., « Geometrically non-linear free vibration of fully clamped
symmetrically laminated rectangular composite plates. », Journal of Sound and Vibration.,
vol. 251, n° 4, p. 579-619, 2002.
Haterbouch M. Beidouri Z., Benamar R., « A new simplified approach for solution for geometrically
non-linear vibrations of thin circular plates », Proceedings of the Euromech Colloquium
, on non linear modes of vibrating systems, Frejus, France, 7-9 June, 2004.
Haterbouch M., Benamar R., « The effects of large vibration amplitudes on the axisymmetric
mode shapes and natural frequencies of clamped thin isotropic circular plates. Part I : iterative
and explicit analytical solution for non-linear transverse vibrations. », Journal of Sound
and vibration, vol. 265, n° 1, p. 123-154, 2003.
Haterbouch M. Benamar R., « The effects of large vibration amplitudes on the axisymmetric
mode shapes and natural frequencies of clamped thin isotropic circular plates. Part II :
iterative and explicit analytical solution for non-linear coupled transverse and in-plane vibrations
», Journal of Sound and Vibration, vol. 277, n° 1-2, p. 1-30, 2004.
Haterbouch M., Benamar R., « Geometrically non-linear free vibrations of simply supported
isotropic thin circular plates. », Journal of Sound and Vibration., vol. 3-5, n° 280, p. 903-
, 2005.
Jiang D. Pierre C., Shaw S., « Non-linear normal modes for vibratory systems under harmonic
excitation. », Journal of sound and vibration., vol. 4-5, n° 288, p. 791-812, 2005.
Kohaupt L., « New upper bounds for free linear and nonlinear vibration systems with applications
of the differential calculus of norms. », Applied Mathematical Modelling., vol. 28,
n° 4, p. 367-388, 2004.
Lamarque C. H. Janin O., « Modal analysis of mechanical systems with impact non-linearities :
Limitation to a modal superposition. », Journal of Sound and Vibration., vol. 4, n° 235,
p. 567-609, 2000.
Lewandowsky R., « Free vibration of strutures with cubic non-linerity-remarks on amplitude
and Rayleigh quotient », Computer methods in applied mechanics and engineering, vol.
, n° 13-14, p. 1681-1709, 2003.
Mei C., « Finite element displacement method for large amplitude free flexural vibrations of
beams and plates. », Computers and Structures., vol. 3, n° 1, p. 163-174, 1973.
Mei C., « Comments on Lagrange-type formulation for finite element analysis of non-linear
beam vibrations. », Journal of Sound and vibration., vol. 94, n° 3, p. 445-447, 1984.
Mei C., « A finite elemnt method for non-linear forced vibrations of rectangular plates. »,
American Institute of Aeronautics and Astronautics Journal., vol. 7, n° 23, p. 1104-1110,
Mei C., « Discussions of finite element formulations of non-linear beam vibrations. », Computers
& Structures., vol. 1, n° 22, p. 83-85, 1986.
Moussaoui F., Benamar R., « Authors reply. », Journal of Sound and vibration, vol. 243, n° 1,
p. 184-189, 2001.
Moussaoui F. Benamar R., White R. G., « The effects of large vibration amplitudes on the
mode shapes and natural frequencies of thin elastic shells. Part I : coupled transversecircumferential
mode shapes of isotropic circular shells of infinite length. », Journal of
Sound and vibration, vol. 5, n° 232, p. 917-943, 2000.
Moussaoui F. Benamar R., White R. G., « The effect of large vibration amplitudes on the
mode shapes and natural frequencies of thin elastic shells. Part II : a new approach for free
transverse vibration of cylindrical shells of infinite length and of finite length considered
at large circumferential wave number », Journal of Sound and Vibration, vol. 255, n° 5,
p. 931-963, 2002.
Pesheck E., Pierre C., « A new Galerkin-based approach for accurate non-linear normal modes
through invariant manifolds. », Journal of sound and vibration., vol. 5, n° 249, p. 971-993,
Ribero P., « Multi-modal geometrical non-linear free vibration of fully clamped composite
laminated plates. », Journal of Sound and vibration, vol. 1, n° 225, p. 127-152, 1999a.
Ribero P., « Non-linear vibration of beams with internal resonance by the hierarchical finiteelement
method. », Journal of Sound and vibration, vol. 4, n° 224, p. 591-624, 1999b.
Ribero P., Petyt M., « Geometrical non-linear, steady, forced, periodic vibration of plates, Part
I : Model and convergence studies. », Journal of Sound and vibration, vol. 5, n° 226, p. 955-
, 1999a.
Ribero P., Petyt M., « Geometrical non-linear, steady, forced, periodic vibration of plates, Part
II : Stability study and analysis of multi-modal response. », Journal of Sound and vibration,
vol. 5, n° 226, p. 985-1010, 1999b.
Rosenberg R. M., « The normal modes of non-linear n-Degree-of-Freedom Systems. », Journal
of Applied Mechanics., vol. 4, n° 29, p. 7-14, 1962.
Rougui M. Moussaoui F., Benamar R., « Non-linear flexural vibrations of thin circular rings.
An analytical approach. », Proceedings of the VIII International Conference on Recent Advances
in Structural Dynamics., Southampton, UK, 14-16 July, 2003.
Shaw S. W., Pierre C., « Normal modes for non-linear vibratory systems. », Journal of sound
and vibration., vol. 164, n° 1, p. 85-124, 1993.
ThompsonW. T., Dahleh M. D., Theory of vibrations with applications, Editions Prentice-Hall,
Upper slide river, new Jersey 07458, USA, 1998.
Vakakis A. F., « Non-linear normal modes (NNMs) and their applications in vibration theory :
An overview. », Mechanical Systems and Signal Processing, vol. 11, n° 1, p. 3-22, 1997.
White R. G., « Effects of non-linearity due to large deflections in the resonance testing of
structures », Sound and vibration, vol. 16, n° 2, p. 255-267, 1971.