Friction-induced vibration and stick-slip waves
Short survey and new results
DOI:
https://doi.org/10.13052/EJCM.20.167-188Keywords:
nonlinear dynamic, contact with dry friction, stick-slip wavesAbstract
This paper presents a short review and new results about the self-excited responses under the form of stick-slip regimes. First, the Van-der Pol oscillator with one degree of freedom is considered. Then it is shown that it is possible to build semi-analytical and numerical (by the FEM.) solutions of stick-slip-separation waves for a brake-like system. Then, we present new results concerning the mechanical model composed of a rigid half space in frictional sliding with an elastic half-space. The method of solution, based on periodic complex Radoks potentials, is novel and differs from those in literature. Besides, in contrast with many works, we shall consider the longitudinal elongation which plays a crucial rule in the solution procedure. A unique and weakly singular solution is found and satisfies all stick-slip conditions except over a narrow zone at transition points which implies a cracklike behaviour at the stick-slip borders.
Downloads
References
Adams G., « Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient
of friction », J. Appl. Mech., vol. 62, p. 867-872, 1995.
Adams G., « Steady sliding of two elastic half-spaces with friction reduction due to interface
stick-slip », J. Appl. Mech., vol. 65, p. 470-475, 1998.
Adams G., « An intersonic slip pulse at a frictional interface between dissimilar materials », J.
Appl. Mech., vol. 68, p. 81-86, 2001.
Andrews D. J., Ben-Zion Y., « Wrinkle-like slip pulse on a fault between different materials »,
PAMM . Proc. Appl. Math. Mech., vol. 5, p. 139140, 2005.
Ben-Zion Y., Andrews D. J., « Properties and implications of dynamic rupture along a material
interface », Bull. Seismol. Soc. Amer., vol. 88, p. 1085-1094, 1998.
Carpenter N. J., Taylor R. L., Katona M. G., « Lagrange constraints for transient finite element
surface contact », Int. J. Numer. Methods Engrg., vol. 32, p. 103128, 1991.
Cochard A., Madariaga R., « Dynamic faulting under rate-dependent friction », Pure Appl.
Geophys., vol. 142, p. 419-445, 1994.
Désoyer T., Martins J. A. C., « Surface instabilities in a Mooney-Rivlin body with frictional
boundary conditions », Int. J. Adhesion and adhesives, vol. 18, p. 413-419, 1998.
Feeny B., Guran A., Hinrichs N., Popp K., « A historical review on dry friction and stick-slip
phenomena », Appl. Mech. Rev., vol. 105, p. 321-340, 1998.
Martins J. A. C., Guimaraes J., Faria L. O., « Dynamic surface solutions in linear elasticity and
viscoelasticity with frictional boundary conditions », J. Vib. Acoust, vol. 117, p. 445-451,
a.
Martins J. A. C., Guimaraes J., Faria L. O., « Dynamic surface solutions in linear elasticity and
viscoelasticity with frictional boundary conditions », J. Vib. Acoust, vol. 117, p. 445-451,
b.
Moirot F., Etude de la stabilité d’un équilibre en présence de frottement de Coulomb : application
au crissement des freins à disques, Thèse de doctorat, Ecole Polytechnique, 1998.
Moirot F., Nguyen Q. S., « Brake squeal : A problem of flutter instability of the steady sliding
solution ? », Arch. Mech., vol. 52, p. 645-662, 2000.
Moirot F., Nguyen Q. S., Oueslati A., « An example of stick-slip and stick-slip-separation
waves », Eur. J. Mech. A/Solids, vol. 22, p. 107-118, 2002.
Mukesh L. D., Jonnalagadda K. K., Kandikatla R. K., Kesava R. K., « Silo music : Sound
emission during the flow of granular materials through tubes », Powder Technology, vol.
, p. 55-71, 2006.
Murty G. S., « Wave propagation at an unbonded interface between two elastic half-spaces »,
J. Acoustic soc. America, vol. 58, p. 1094-1095, 1975.
Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity, Noordhoff,
Groningen, 1953.
Nakai M., Yokoi M., « Band brake squeal », J. Vib. Acoustics, vol. 118, p. 190-197, 1996.
Nguyen Q. S., Oueslati A., Steindl A., Teufel A., Troger H., « Travelling interface waves in
a brake-like system under unilateral contact and Coulomb friction », C.R. Mecanique, vol.
, p. 203-209, 2008.
Oancea V., Laursen T. A., « Stability analysis of state-dependent dynamic frictional sliding »,
J. Non-linear Mechanics, vol. 32, p. 837-853, 1997.
Oberle H. J., Grimm W., Berger E., A program for the numerical solution of optimal control
problems, Rapport de recherche n° 515 der DFVLR, Universität Hamburg, 1989.
Oestreich M., Hinrichs N., Popp K., « Bifurcation and stability analysis for a nonsmooth friction
oscillator », Arch. Appl. Mech., vol. 66, p. 301-314, 1996.
Oueslati A., Ondes élastiques de surface et fissures dinterface sous contact unilatéral et frottement
de Coulomb, Thèse de doctorat, Ecole Polytechnique, 2004.
Oueslati A., Nguyen Q. S., Baillet L., « Stick-slip-separation waves in unilateral and frictional
contact », C. R. Mecanique, vol. 66, p. 133-140, 2003.
Ranjith K., Rice J. R., « Slip dynamics at an interface between dissimilar materials », J. Mech.
Phys. Solids, vol. 49, p. 341-361, 2001.
Renardy M., « Ill-posedness at the boundary for elastic solids sliding under Coulomb friction »,
J. Elasticity, vol. 27, p. 281287, 1992.
Schallamach A., « How does rubber slide ? »,Wear, vol. 17, p. 301-312, 1971.
Simoes F. M., Martins J. A. C., « Instability and ill-posedness in some friction problems », J.
Engn. Science, vol. 36, p. 1265-1293, 1998.
Teufel A., Steindl A., Troger H., « On nonsmooth bifurcations in a simple friction oscillator »,
J. Geophys. Res., vol. 102, p. 139-140, 2005.
Weertman J., « Dislocations moving uniformly on the interface between isotropic media of
different elastic properties », J. Mech. Phys. Solids, vol. 11, p. 197-204, 1963.
Zharii O., « Frictional contact between the surface wave and a rigid strip », J. Appl. Mech, vol.
, p. 15-20, 1996.