Discrete approaches for crowd movement modelling

Authors

  • Philippe Pécol Université Paris-Est Laboratoire Navier (ENPC/IFSTTAR/CNRS), École des Ponts ParisTech 6-8 av. Blaise Pascal, F-77455 Marne-la-Vallée
  • Stefano Dal Pont Université Paris-Est, IFFSTAR 58 boulevard Lefebvre, F-75732 Paris
  • Silvano Erlicher IOSIS Industries 4 rue Dolores Ibarruri, F-93188 Montreuil
  • Pierre Argoul Université Paris-Est Laboratoire Navier (ENPC/IFSTTAR/CNRS), École des Ponts ParisTech 6-8 av. Blaise Pascal, F-77455 Marne-la-Vallée

Keywords:

granular assembly, crowd movement, contact, collisions

Abstract

This article is devoted to the modelling of the movements of an assembly of particles. Our aim is to develop a model capable of reproducing the behavior of a crowd of people in walking situations (free motion, emergency evacuation, etc.). The final model must be able to handle local interactions such as pedestrian-pedestrian and pedestrian-obstacle in order to reproduce the global dynamic of pedestrian traffic. Three already existing discrete methods, originally proposed to simulate a granular assembly, are first analyzed and compared. These methods are able to manage collisions between rigid particles. They are then adapted for representing pedestrians together with their willingness to move. Their numerical implementation allows for the performance of simulations in various specific configurations.

Downloads

Download data is not yet available.

References

Allen M., Tildesley D., Computer simulation of liquids, Oxford University Press, 1987.

Blue V., Adler J., “ Cellular automata microsimulation of bi-directional pedestrian flows”, Journal

of the Transportation Research Board, vol. 1678, p. 135-141, 2000.

Bodgi J., Synchronisation piétons-structure: Application aux vibrations des passerelles souples,

PhD thesis, Ecole Nationale des Ponts et Chaussées, 2008.

Bodgi J., Erlicher S., Argoul P., “ Lateral vibration of footbridges under crowd - loading :

continuous crowd modelling approach”, Key Engineering Materials, vol. 347, p. 685-690,

Cundall P., “ A computer model for simulating progressive large scale movements of blocky

rock systems”, Proc. of the symposium of the international society of rock mechanics, vol. 1,

p. 132-150, 1971.

Cundall P., Strack O., “ A discrete numerical model for granular assemblies”, Geotechnique,

vol. 29, n° 1, p. 47-65, 1979.

Dal Pont S., Dimnet E., “ A theory for multiple collisions of rigid solids and numerical simulation

of granular flow”, Int.J.Solids and Structures, vol. 43, n° 20, p. 6100-6114, 2006.

Dal Pont S., Dimnet E., “ Theoretical approach to instantaneous collisions and numerical simulation

of granular media using the A-CD2 method”, Communications in Applied Mathematics

and Computational Science -Berkeley, vol. 3, n° 1, p. 1-24, 2008.

Dimnet E., Mouvement et collisions de solides rigides ou déformables, PhD thesis, Ecole Nationale

des Ponts et Chaussées, 2002.

Ericson C., Real Time Collision Detection, Morgan Haufmann Publishers, 2004.

Erlicher S., Trovato A., Argoul P., “ Modeling the lateral pedestrian force on a rigid floor by

a self-sustained oscillator”, Mechanical Systems and Signal Processing, vol. 24, p. 1579-

, 2010. doi:10.1016/j.ymssp.2009.11.006.

Frémond M., “ Rigid bodies collisions”, Physics Letters A, vol. 204, p. 33-41, 1995.

Frémond M., Collisions, Edizioni del Dipartimento di Ingegneria Civile dell’ Università di

Roma Tor Vergata, 2007.

Hankin B., Wright R., “ Passenger flow in subways”, Oper. Res., vol. 9, p. 81-88, 1958.

Helbing D., “ Traffic and related self-driven many-particle systems”, Reviews of Modern

Physics, vol. 73, p. 1067-1141, 2002.

Helbing D., Buzna L., Johansson A.,Werner T., “ Self-Organized Pedestrian Crowd Dynamics:

Experiments, Simulations, and Design Solutions”, Transportation Science, vol. 39, n° 1,

p. 1-24, 2005.

Helbing D., Farkas I., Vicsek T., “ Simulating dynamic features of escape panic”, Nature, vol.

, p. 487-490, 2000.

Helbing D., Molnar P., “ Social force model for pedestrian dynamics”, Physical Review E, vol.

, n° 5, p. 4282-4286, 1995.

Henderson L., “ The statistics of crowd fluids”, Nature, vol. 229, p. 381-383, 1971.

Hoogendoorn S., Bovy P., Daamen W., “ Microscopic pedestrian wayfinding and dynamics

modelling”, Pedestrian and Evacuation Dynamics,, vol. , p. 123-154, 2001.

Jean M., “ The Non Smooth Contact Dynamics Method”, Compt. Methods Appl. Math. Engrg.,

vol. 177, p. 235-257, 1999.

Jean M., Moreau J., “ Unilaterality and dry friction in the dynamics of rigid bodies collection”,

Contact Mechanics International Symposium,, vol. , p. 31-48, 1992.

Kimmel R., Sethian J., “ Fast marching methods for computing distance maps and shortest

paths”, Technical Report 669, CPAM, University of California, Berkeley, 1996.

Kishino Y., “ Disk model analysis of granular media”,Micromechanics of Granular Materials,,

vol. , p. 143-152, 1988.

Klüpfel H., A Cellular Automaton Model for Crowd Movement and Egress Simulation, PhD

thesis, Université Duisburg-Essen de Standort Duisburg, 2003.

Maury B., “ A time-stepping scheme for inelastic collisions”, Numerische Mathematik, vol.

, n° 4, p. 649-679, 2006.

Moreau J., “ Sur les lois du frottement, de la viscosité et de la plasticité”, Comptes rendus de

l’Académie des Sciences de Paris, vol. 271, p. 608-611, 1970.

Moreau J., “ Unilateral contact and dry friction in finite freedom dynamics”, in J. Moreau,

W. N. Y. P.-D. Panagiotopoulos, eds. Springer-Verlag (eds), Non Smooth Mechanics and

Applications, CISM Courses and Lectures, vol. 302, p. 1-82, 1988.

Moreau J., “ Some numerical methods in multibody dynamics: Application to granular materials”,

Eur.J.Mech.A/Solids, vol. 13, p. 93-114, 1994.

Moussaïd M., Perozo N., Garnier S., Helbing D., Theraulaz G., “ The Walking Behaviour of

Pedestrian Social Groups and Its Impact on Crowd Dynamics.”, PLoS ONE, 2010. e10047.

doi:10.1371/journal.pone.0010047.

Musse S., Jung C., Jr. J. J., Braun A., “ Using computer vision to simulate the motion of virtual

agents”, Computer Animation and Virtual Worlds, vol. 18, p. 83-93, 2007.

Paoli L., “ Time discretization of vibro-impact”, Phil. Trans. R. Soc. A, vol. 359, p. 2405-2428,

Paris S., Characterisation of levels of services and modelling of flows of people inside exchange

areas, PhD thesis, Université de Rennes 1, 2007.

Paris S., Pettré J., Donikian S., “ Pedestrian Reactive Navigation for Crowd Simulation: a

Predictive Approach”, Computer Graphics Forum, vol. 26, n° 3, p. 665-674, 2007.

Pécol P., Dal Pont S., Erlicher S., Argoul P., “ Modelling crowd-structure interaction”,

Mécanique & Industries, EDP Sciences, vol. 11, n° 6, p. 495-504, 2010.

doi:10.1051/meca/2010057.

Radjai F., Jean M., Moreau J., Roux S., “ Force Distributions in Dense Two-Dimensional Granular

Systems”, Phys. Rev. Lett., vol. 77, n° 2, p. 264-277, 1996.

Radjai F., Richefeu V., “ Contact dynamics as a nonsmooth discrete element method”, Mechanics

of Materials 41, vol. 41, p. 715-728, 2009.

Renouf M., Optimisation numérique et calcul parallèle pour l’étude des milieux divisés bi- et

tridimensionnels, PhD thesis, UniversitéMontpellier II - Sciences et Techniques du Languedoc

-, 2004.

Reynolds C., “ Flocks, herds, and schools: A distributed behavioral model”, Computer Graphics,

vol. 21, p. 25-34, 1987.

Saussine G., Cholet C., Gautier P., Dubois F., Bohatier C., Moreau J., “ Modelling ballast behaviour

under dynamic loading. Part 1: a 2D polygonal discrete element method approach”,

Comput. Methods Appl. Mech. Engrg, vol. 195, p. 2841-2859, 2006.

Strogatz S., Abrams D., McRobie A., Eckhardt B., Ott E., “ Theoretical mechanics: Crowd

synchrony on the Millenium bridge”, Nature, vol. 438, p. 43-44, 2005.

Sung M., Gleicher M., Chenney S., “ Scalable behaviors for crowd simulation”, Eurographics,

vol. 23, p. 519-528, 2004.

Teknomo K., “ Application of microscopic pedestrian simulation model”, Transportation Research

Part F, vol. 9, p. 15-27, 2006.

Venel J., Modélisation mathématique des mouvements de foule, PhD thesis, Laboratoire de

Mathématiques, Université Paris XI, Orsay, France, 2008.

Downloads

Published

2011-11-20

How to Cite

Pécol, P. ., Pont, S. D. ., Erlicher, S. ., & Argoul, P. . (2011). Discrete approaches for crowd movement modelling. European Journal of Computational Mechanics, 20(1-4), 189–206. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1625

Issue

Section

Original Article

Most read articles by the same author(s)