Discrete approaches for crowd movement modelling
Keywords:
granular assembly, crowd movement, contact, collisionsAbstract
This article is devoted to the modelling of the movements of an assembly of particles. Our aim is to develop a model capable of reproducing the behavior of a crowd of people in walking situations (free motion, emergency evacuation, etc.). The final model must be able to handle local interactions such as pedestrian-pedestrian and pedestrian-obstacle in order to reproduce the global dynamic of pedestrian traffic. Three already existing discrete methods, originally proposed to simulate a granular assembly, are first analyzed and compared. These methods are able to manage collisions between rigid particles. They are then adapted for representing pedestrians together with their willingness to move. Their numerical implementation allows for the performance of simulations in various specific configurations.
Downloads
References
Allen M., Tildesley D., Computer simulation of liquids, Oxford University Press, 1987.
Blue V., Adler J., “ Cellular automata microsimulation of bi-directional pedestrian flows”, Journal
of the Transportation Research Board, vol. 1678, p. 135-141, 2000.
Bodgi J., Synchronisation piétons-structure: Application aux vibrations des passerelles souples,
PhD thesis, Ecole Nationale des Ponts et Chaussées, 2008.
Bodgi J., Erlicher S., Argoul P., “ Lateral vibration of footbridges under crowd - loading :
continuous crowd modelling approach”, Key Engineering Materials, vol. 347, p. 685-690,
Cundall P., “ A computer model for simulating progressive large scale movements of blocky
rock systems”, Proc. of the symposium of the international society of rock mechanics, vol. 1,
p. 132-150, 1971.
Cundall P., Strack O., “ A discrete numerical model for granular assemblies”, Geotechnique,
vol. 29, n° 1, p. 47-65, 1979.
Dal Pont S., Dimnet E., “ A theory for multiple collisions of rigid solids and numerical simulation
of granular flow”, Int.J.Solids and Structures, vol. 43, n° 20, p. 6100-6114, 2006.
Dal Pont S., Dimnet E., “ Theoretical approach to instantaneous collisions and numerical simulation
of granular media using the A-CD2 method”, Communications in Applied Mathematics
and Computational Science -Berkeley, vol. 3, n° 1, p. 1-24, 2008.
Dimnet E., Mouvement et collisions de solides rigides ou déformables, PhD thesis, Ecole Nationale
des Ponts et Chaussées, 2002.
Ericson C., Real Time Collision Detection, Morgan Haufmann Publishers, 2004.
Erlicher S., Trovato A., Argoul P., “ Modeling the lateral pedestrian force on a rigid floor by
a self-sustained oscillator”, Mechanical Systems and Signal Processing, vol. 24, p. 1579-
, 2010. doi:10.1016/j.ymssp.2009.11.006.
Frémond M., “ Rigid bodies collisions”, Physics Letters A, vol. 204, p. 33-41, 1995.
Frémond M., Collisions, Edizioni del Dipartimento di Ingegneria Civile dell’ Università di
Roma Tor Vergata, 2007.
Hankin B., Wright R., “ Passenger flow in subways”, Oper. Res., vol. 9, p. 81-88, 1958.
Helbing D., “ Traffic and related self-driven many-particle systems”, Reviews of Modern
Physics, vol. 73, p. 1067-1141, 2002.
Helbing D., Buzna L., Johansson A.,Werner T., “ Self-Organized Pedestrian Crowd Dynamics:
Experiments, Simulations, and Design Solutions”, Transportation Science, vol. 39, n° 1,
p. 1-24, 2005.
Helbing D., Farkas I., Vicsek T., “ Simulating dynamic features of escape panic”, Nature, vol.
, p. 487-490, 2000.
Helbing D., Molnar P., “ Social force model for pedestrian dynamics”, Physical Review E, vol.
, n° 5, p. 4282-4286, 1995.
Henderson L., “ The statistics of crowd fluids”, Nature, vol. 229, p. 381-383, 1971.
Hoogendoorn S., Bovy P., Daamen W., “ Microscopic pedestrian wayfinding and dynamics
modelling”, Pedestrian and Evacuation Dynamics,, vol. , p. 123-154, 2001.
Jean M., “ The Non Smooth Contact Dynamics Method”, Compt. Methods Appl. Math. Engrg.,
vol. 177, p. 235-257, 1999.
Jean M., Moreau J., “ Unilaterality and dry friction in the dynamics of rigid bodies collection”,
Contact Mechanics International Symposium,, vol. , p. 31-48, 1992.
Kimmel R., Sethian J., “ Fast marching methods for computing distance maps and shortest
paths”, Technical Report 669, CPAM, University of California, Berkeley, 1996.
Kishino Y., “ Disk model analysis of granular media”,Micromechanics of Granular Materials,,
vol. , p. 143-152, 1988.
Klüpfel H., A Cellular Automaton Model for Crowd Movement and Egress Simulation, PhD
thesis, Université Duisburg-Essen de Standort Duisburg, 2003.
Maury B., “ A time-stepping scheme for inelastic collisions”, Numerische Mathematik, vol.
, n° 4, p. 649-679, 2006.
Moreau J., “ Sur les lois du frottement, de la viscosité et de la plasticité”, Comptes rendus de
l’Académie des Sciences de Paris, vol. 271, p. 608-611, 1970.
Moreau J., “ Unilateral contact and dry friction in finite freedom dynamics”, in J. Moreau,
W. N. Y. P.-D. Panagiotopoulos, eds. Springer-Verlag (eds), Non Smooth Mechanics and
Applications, CISM Courses and Lectures, vol. 302, p. 1-82, 1988.
Moreau J., “ Some numerical methods in multibody dynamics: Application to granular materials”,
Eur.J.Mech.A/Solids, vol. 13, p. 93-114, 1994.
Moussaïd M., Perozo N., Garnier S., Helbing D., Theraulaz G., “ The Walking Behaviour of
Pedestrian Social Groups and Its Impact on Crowd Dynamics.”, PLoS ONE, 2010. e10047.
doi:10.1371/journal.pone.0010047.
Musse S., Jung C., Jr. J. J., Braun A., “ Using computer vision to simulate the motion of virtual
agents”, Computer Animation and Virtual Worlds, vol. 18, p. 83-93, 2007.
Paoli L., “ Time discretization of vibro-impact”, Phil. Trans. R. Soc. A, vol. 359, p. 2405-2428,
Paris S., Characterisation of levels of services and modelling of flows of people inside exchange
areas, PhD thesis, Université de Rennes 1, 2007.
Paris S., Pettré J., Donikian S., “ Pedestrian Reactive Navigation for Crowd Simulation: a
Predictive Approach”, Computer Graphics Forum, vol. 26, n° 3, p. 665-674, 2007.
Pécol P., Dal Pont S., Erlicher S., Argoul P., “ Modelling crowd-structure interaction”,
Mécanique & Industries, EDP Sciences, vol. 11, n° 6, p. 495-504, 2010.
doi:10.1051/meca/2010057.
Radjai F., Jean M., Moreau J., Roux S., “ Force Distributions in Dense Two-Dimensional Granular
Systems”, Phys. Rev. Lett., vol. 77, n° 2, p. 264-277, 1996.
Radjai F., Richefeu V., “ Contact dynamics as a nonsmooth discrete element method”, Mechanics
of Materials 41, vol. 41, p. 715-728, 2009.
Renouf M., Optimisation numérique et calcul parallèle pour l’étude des milieux divisés bi- et
tridimensionnels, PhD thesis, UniversitéMontpellier II - Sciences et Techniques du Languedoc
-, 2004.
Reynolds C., “ Flocks, herds, and schools: A distributed behavioral model”, Computer Graphics,
vol. 21, p. 25-34, 1987.
Saussine G., Cholet C., Gautier P., Dubois F., Bohatier C., Moreau J., “ Modelling ballast behaviour
under dynamic loading. Part 1: a 2D polygonal discrete element method approach”,
Comput. Methods Appl. Mech. Engrg, vol. 195, p. 2841-2859, 2006.
Strogatz S., Abrams D., McRobie A., Eckhardt B., Ott E., “ Theoretical mechanics: Crowd
synchrony on the Millenium bridge”, Nature, vol. 438, p. 43-44, 2005.
Sung M., Gleicher M., Chenney S., “ Scalable behaviors for crowd simulation”, Eurographics,
vol. 23, p. 519-528, 2004.
Teknomo K., “ Application of microscopic pedestrian simulation model”, Transportation Research
Part F, vol. 9, p. 15-27, 2006.
Venel J., Modélisation mathématique des mouvements de foule, PhD thesis, Laboratoire de
Mathématiques, Université Paris XI, Orsay, France, 2008.