Extension of modal reduction methods to non-linear coupled structure-acoustic problems
DOI:
https://doi.org/10.13052/EJCM.20.227-245Keywords:
reduced model, fluid structure interaction, non-linear vibration, vibroacoustic coupling, time integrationAbstract
This paper proposes a robust reduction method dedicated to non-linear vibroacoustic problems in the context of localized geometrical non-linearities. The method consists in enriching the truncated uncoupled modal basis of the linear model by a static response due to unit forces on the non-linear degrees of freedom and by the static response of the fluid due to the interaction with the structure. To show the effectiveness of the proposed method, numerical simulations of responses of an elastic plate closing an acoustic cavity and a hang-on exhaust are performed.
Downloads
References
Amabili M., Nonlinear Vibrations And Stability Of Shells And Plates, Cambridge, 2008.
Amabili M., Touzé C., “ Reduced-order models for nonlinear vibrations of fluid-filled circular
cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods”,
Journal of Fluids and Structures, vol. 23, p. 885-903, 2007.
Bathe K., Finite Element Procedures in Engineering Analysis, Prentice Hall, 1982.
Géradin M., Rixen D., Mechanical Vibrations: Theory and Applications to Structural Dynamics,
John Wiley & Sons Ltd, 1997.
Irons B., “ Role of part-inversion in fluid-structure problems with mixed variables”, AIAA Journal,
vol. 8, p. 568, 1970.
Masson G., Ait-Brik B., Bouhaddi N., Cogan S., “ Component mode synthesis (CMS) based
on an enriched Ritz approach for efficient structural optimization”, Journal of Sound and
Vibration, vol. 296, p. 845-860, 2006.
Morand H., Ohayon R., Interactions Fluides-Structures, MASSON, 1992.
Nayfeh A. H., Mook D. T., Nonlinear Oscillations, Wiley Classics Library, 1995.
Pérignon F., Vibrations Forcées De Structures Minces, ’Elastiques, Non-Linéaires, PhD thesis,
Université de la Méditerranée (Aix-Marseille II), 2004.
Soares-Jr D., von Estorff O., Mansur W., “ Efficient non-linear solid-fluid interaction analysis
by an iterative BEM/FEM coupling”, International Journal for Numerical Methods in
Engineering, vol. 64, p. 1416-1431, 2005.
Tran Q., Analyse robuste et Optimisation de problème vibroacoustiques avec interfaces absorbantes,
PhD thesis, Université de Franche-Comté, 2009.
Tran Q. H., Ouisse M., Bouhaddi N., “ A robust component mode synthesis method for stochastic
damped vibroacoustics”, Mechanical Systems and Signal Processing, vol. 24, p. 164-
, 2010.