Geometrically nonlinear analysis of thin shell by a quadrilateral finite element with in-plane rotational degrees of freedom

Authors

  • Djamel Boutagouga Université Fares Yahia de Médéa, 26000 Médéa, Algérie
  • Abdelhacine Gouasmia LGC, Laboratoire de Génie Civil, Université Badji Mokhtar de Annaba BP 12 –23100 Annaba, Algérie
  • Kamel Djeghaba LGC, Laboratoire de Génie Civil, Université Badji Mokhtar de Annaba BP 12 –23100 Annaba, Algérie

DOI:

https://doi.org/10.13052/EJCM.19.707-724

Keywords:

shells, plates, nonlinear analysis, drilling rotation, finites elements method

Abstract

We present in this research article, the improvements that we made to create a four nodes flat quadrilateral shell element for geometrically nonlinear analysis, based on corotational updated lagrangian formulation. These improvements are initially related to the improvement of the in-plane behaviour by incorporation of the in-plane rotational degrees of freedom known as “drilling degrees of freedom” in the membrane displacements field formulation. In the second phase, a co-rotational spatial local system of axes which adapts well to the problems of quadrilateral elements is adopted, while ensuring simplicity and effectiveness at numerical level. The required goal being mainly to have a robust thin shell element associated with a simplified formulation. The obtained element remains economic, and showing a robust behaviour in delicate situations of tests.

Downloads

Download data is not yet available.

References

Allman D. J., “A compatible triangular element including vertex rotations for plane elasticity

analysis”, Computers and Structures, vol. 19, 1984, p. 1-8.

Batoz J.-L., Ben Tahar M., “A Study of three-node Triangular plate bending element”,

International Journal For Numerical Methods in Engineering., vol. 15, 1980, p. 1771-1812.

Batoz J.-L., Ben Tahar M., “Evaluation of new Quadrilateral thin plate bending element”,

International Journal For Numerical Methods in Engineering, vol. 18, 1982, p. 1655-1677.

Boisse P., Gelin J. C., and Daniel J.L., “Computation of thin structures at large strains and

large rotations using a simple C0 isoparametric three-node shell element”, Computers and

Structures, vol. 58, n° 2, 1996, p. 249-261.

Boutagouga D., Analyse non linéaire géométrique et matérielle des coques par un élément

quadrilatère avec ddl rotationnel dit « drilling rotation », Mémoire de Magister, Université

Badji mokhtar Annaba, 2008.

Chinosi C., “Shell elements as a coupling of plate and ‘drill’ elements”, Computers and

Structures, vol. 57, n° 5, 1994, p. 893-902.

Gotsis P.K., “structural optimization of shell structures”, Computers and Structures, vol. 50,

n° 4, 1994, p. 499-507.

Han S.C., Ham H.D., Nukulchaic ,W.K., “Geometrically non-linear analysis of arbitrary

elastic supported plates and shells using an element-based Lagrangian shell element”,

International Journal of Non-Linear Mechanics, vol. 43, 2008, p. 53-64.

Hughes T. J. R., Brezzi F., “On drilling degrees of freedom”, Computer Methods in Applied

Mechanics and Engineering, vol. 72, 1989, p. 105-121.

Hughes T.J.R., Brezzi F., Masud A, Harari I., “Finite elements with drilling degrees of

freedom: theory and numerical evaluations”, Fifth International Symposium on Numerical

Methods in Engineering, 1989, Ashurst, U.K., p. 3-17.

Ibrahimbegovic A., Taylor R. L., Wilson E. L., “A robust quadrilateral membrane finite

element with drilling degrees of freedom”, International Journal for Numerical Methods

in Engineering, vol. 30, 1990, p. 445-457.

Jetteur Ph., A shallow shell element with in-plane rotational degrees of freedom, Rapport

interne, 1986, INRIA.

Khosravi P., Ganesan R., Sedaghati R., “An efficient facet shell element for co-rotational

nonlinear analysis of thin and moderately thick laminated composite structures”,

Computers and Structures, vol. 86, 2008, p. 850-858.

Kim K.D., Park T., Voyiadjis G.Z., 1998, “Postbuckling analysis of composite panels with

imperfection damage”, Computational Mechanics, vol. 22, 1998, p. 375-387.

Kim K., Voyiadjis G.Z., “Non-linear finite element analysis of composite panels”,

Composites, vol. 30, Part B, 1999, p. 365-381.

Meek J.L, Ristic S., 1997 “Large Displacement Analyses of thin plates and shells using a flat

facet finite element formulation”, Computer Methods in Applied Mechanics and

Engineering, vol. 145, p. 285-299.

Pacoste C., “Co-rotational flat facet triangular elements for shell instability analyses”,

Computer. Methods in Applied. Mechanics and Engineering, vol. 156, 1998, p. 75-110.

Ramm E., “The Riks/Wempner approach – An extension of the displacement control method in

non linear analyses”, Recent Advances in nonlinear Computational Mechanics, E. Hinton

D.R.J, Owen and C. Taylor (ed), university of Swansea, England, 1982, p. 63-89.

Surana K.S., “Geometrically nonlinear formulation for the curved shell elements”,

International Journal for Numerical Methods in Engineering, vol. 19, 1983, p. 581-615.

Zienkiewicks O.C., The finite element method, London Mc Graw Hill, Third edition, 1977.

Downloads

Published

2010-08-06

How to Cite

Boutagouga, D. ., Gouasmia, A. ., & Djeghaba, K. (2010). Geometrically nonlinear analysis of thin shell by a quadrilateral finite element with in-plane rotational degrees of freedom. European Journal of Computational Mechanics, 19(8), 707–724. https://doi.org/10.13052/EJCM.19.707-724

Issue

Section

Original Article