Comparaison de différentes approches pour la simulation numérique d’impacts hydrodynamiques
DOI:
https://doi.org/10.13052/EJCM.19.743-770Keywords:
hydrodynamic impact problems, Wagner theory, ALE formulation, multi-phase eulerian formulation.Abstract
The aim of this paper is to compare several simulation methods for hydrodynamic impact problems. For this purpose, three models has been developed: (i) a finite element model based on the Wagner theory, (ii) a finite element model based on a Arbitrary Lagrangian Eulerian (ALE) formulation, (iii) a finite volume model based on a two-phase eulerian formalism and the Volume-of-Fluid technique. The different results are compared with published and experimental data.
Downloads
References
Aquelet N., Souli M., Olovson L., “Euler-Lagrange coupling with damping effects:
Application to slamming problems”, Computer Methods in Applied Mechanics and
Engineering, vol. 195, 2006, p. 110-132.
Azcueta R., Computation of turbulent free-surface flows around ships and floating bodies,
Thèse de Doctorat, Université d’Hambourg, 2001.
Battistin D., Iafrati A., “Hydrodynamic loads during water entry of two-dimensional and
axisymetric bodies”, Journal of Fluids and Structures, vol. 17, n° 5, 2003, p. 643-664.
Belytschko T., Liu W.K., Moran B., Nonlinear finite elements for continua and structures,
Chicester, John Wiley & Sons, 2000.
Cointe R., “Two-dimensional water-solid impact”, Journal of Offshore Mechanics and Arctic
Engineering, vol. 111, 1989, p. 109-114.
Cointe R., Armand J.-L., “Hydrodynamic impact analysis of a cylinder”, Journal of Offshore
Mechanics and Arctic Engineering, vol. 109, 1987, p. 237-243.
Colicchio G., Greco M., Faltinsen O.M., “A BEM-level set domain-decomposition strategy
for non-linear and fragmented interfacial flows”, International Journal for Numerical
Methods in Engineering, vol. 67, 2006, p. 1385-1419.
Colicchio G., Landrini M., Chaplin J.R., “Levet-Set computations of free surface rotational
flows”, Journal of Fluids Engineering, vol. 127, n° 6, 2005, p. 1111-1121.
Constantinescu A., Fuiorea I., Nême A., Bertram V., Salas M., “Hydro-elastic numeric
analysis of a wedge-shaped shell structure impacting a water surface”, Latin American
Applied Research, vol. 38, n° 1, 2008, p. 35-43.
Constantinescu A., Modélisation 2D de l’impact d’une structure sur l’eau. Initiation de
l’endommagement, Thèse de doctorat, Université de Bretagne Occidentale, 2006.
Donguy B., Etude de l’interaction fluide-structure lors de l’impact hydrodynamique, Thèse de
doctorat, Ecole Centrale de Nantes, 2002.
Faltinsen O.M., “Water entry of a wedge with finite deadrise angle”, Journal of Ship
Research, vol. 46, n° 1, 2002, p. 39-51.
Faltinsen O.M., Hydrodynamics of High-Speed Marine Vehicles, Cambridge, Cambridge
University Press, 2005.
Federico F., Amoruso A., “Impact between fluids and solids. Comparison between analytical and
FEA results”, International Journal of Impact Engineering, vol. 36, 2009, p. 154-164.
Ferziger J.H., Periü M., Computational Methods for Fluids Dynamics, 3rd Edition, Berlin,
Springer, 2002.
Ganesan S., Matthies G., Tobiska L., “On spurious velocities in incompressible flow
problems with interfaces”, Computers Methods in Applied Mechanics and Engineering,
vol. 196, 2007, p. 1193-1202.
Gazzola T., Contribution aux problèmes d’impacts non-linéaires : le problème de Wagner
couplé, Thèse de doctorat, Ecole Centrale de Paris, 2007.
Gonzáles D., Cueta E., Chinesta F., Doblaré M., “A natural element updated Lagrangian
strategy for free-surface fluid dynamics”, Journal of Computational Physics, vol. 223,
n° 1, 2007, p. 127-150.
Hirt C.W., Nichols B.D., “Volume of fluid (VOF) method for the dynamics of free
boundaries”, Journal of Computational Physics, vol. 39, n° 1, 1981, p. 201-225.
Iafrati A., Carcaterra A., Ciappi E., Campana E.F., “Hydroelastic analysis of a simple
oscillator impacting the free surface”, Journal of Ship Research, vol. 44, n° 4, 2000,
p. 278-289.
Idelson S.R., Onate E., Del Pin F., “A Lagrangian meshless finite element method applied to
fluid-structure interaction problems”, Computers and Structures, vol. 81, n° 8-11, 2003,
p. 583-593.
Khabakhpasheva T.I., “Fluid-structure interaction during the impact of a cylindrical shell on a
thin layer of water”, Journal of Fluids and Structures, vol. 25, n° 3, 2009, p. 431-444.
Kim B., Shin Y.S., “An efficient numerical method for the solution of two-dimensional
hydrodynamic impact problems”, Proceedings of the thirteen International Offshore and
Polar Engineering Conference, Honolulu, Hawaii, USA, may 25-30, 2003.
Kleefsman K.M.T., Fekken G., Veldman A.E.P., Iwanowski B., Buchner B., “A Volume-of-
Fluid based simulation method for wave impact problems”, Journal of Computational
Physics, vol. 206, 2005, p. 363-393.
Korobkin A., “Analytical models of water impact”, European Journal of Applied
Mathematics, vol. 15, 2004, p. 821-838.
Korobkin A., “The entry of an elliptical paraboloid into a liquid at variable velocity”, Journal
of Applied Mathematics and Mechanics, vol. 66, n° 1, 2002, p. 39-48.
Leroyer A., Hay A., Visonneau M., « Intéraction écoulement/mouvement par un solveur
Navier-Stokes avec adaptation locale de maillage ; application à l’étude du slamming »,
Mécaniques et Industries, vol. 8, n° 2, 2007, p. 151-160.
Malenica S., “Hydro structure interactions in seakeeping”, International Workshop on
Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia, september 19-21, 2007.
Malleron N., Contribution à l’étude des interactions fluide-structure pour l’analyse de
l’impact hydrodynamique d’un système de flottabilité d’hélicoptère, Thèse de doctorat,
Université d’Aix-Marseille, 2009.
Mei X., Liu Y., Yue D.K.P, “On the water impact of general two-dimensional sections”,
Applied Ocean Research, vol. 21, 1999, p. 1-15.
Oger G., Doring M., Alessandrini B., Ferrant P., “Two-dimensional SPH simulations of wedge
water entries”, Journal of Computational Physics, vol. 213, n° 2, 2006, p. 803-822.
Peseux B., Gornet L., Donguy B., “Hydrodynamic impact: Numerical and experimental
investigations”, Journal of Fluids and Structures, vol. 21, n° 3, 2005, p. 277-303.
Ribet H., Laborde P., Mahé M., “Numerical modeling of the impact on water of a flexible
structure by explicit finite element method – Comparisons with Radioss numerical results
and experiments”, Aerospace Science and Technology, vol. 3, n° 2, 1999, p. 83-91.
Rompteaux A., Vila J.P., « Calcul du tossage avec “smart fluids”, un code particulaire
compressible », Actes des 7e Journées de l’Hydrodynamique, Marseille, 8-10 mars 1999.
Scolan Y.M., “Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of
an incompressible liquid”, Journal of Sound and Vibration, vol. 277, 2004, p. 163-203.
Sun H., Faltinsen O.M., “Water impact of horizontal circular cylinders and cylindrical
shells”, Applied Ocean Research, vol. 28, 2006, p. 299-311.
Takagi K., “Numerical evaluation of three-dimensional water impact by the displacement
potential formulation”, Journal of Engineering Mathematics, vol. 48, 2004, p. 339-352.
Van Leer B., “Towards the ultimate conservative difference scheme. Parts III and IV”,
Journal of Computational Physics, vol. 23, 1977, p. 263-299.
Varyani K.S., Gatiganti R.M., Gerigk M., “Motions and slamming impact on catamaran”,
Ocean Engineering, vol. 27, 2000, p. 729-747.
von Kármán T., The impact of seaplane floats during landing, NACA Technical Note No.
, 1929.
Wagner T., The landing of seaplanes, NACA Technical Memorandum No. 622, 1931.
Youngs D.L., “Time-dependant multi-material flow with large fluid distorsion”, Numerical
Methods for Fluid Dynamics, Morton K.W. et Baines M.J. (ed), Academic press, New
York, 1982.
Zhao R., Faltinsen O.M., “Water entry of two-dimensional bodies”, Journal of Fluid
Mechanics, vol. 246, 1993, p. 593-612.