A partitioned Newton method for the interaction of a fluid and a 3D shell structure

Authors

  • Miguel Ángel Fernández INRIA, Paris-Rocquencourt, BP 105, F-78153 Le Chesnay cedex
  • Jean-Frédéric Gerbeau INRIA, Paris-Rocquencourt, BP 105, F-78153 Le Chesnay cedex
  • Antoine Gloria INRIA, Lille-Nord Europe, 40 avenue Halley, F-59650 Villeneuve d’Ascq
  • Marina Vidrascu INRIA, Paris-Rocquencourt, BP 105, F-78153 Le Chesnay cedex

DOI:

https://doi.org/10.13052/EJCM.19.479-512

Keywords:

fluid-structure interaction, 3D shell finite elements, domain decomposition, partitioned schemes, Newton algorithm

Abstract

We propose a new fluid-structure algorithm based on a domain decomposition paradigm. The method is based on the principle “linearize first, then decompose” whereas the usual schemes are generally “nonlinear in subdomains”. The proposed approach is more attractive when the complexity of the structure is high, which is the case with the structural model used in this study (nonlinear 3D shell). Another contribution of this paper is to investigate the use of a Neumann-Neumann preconditioner for the linearized problem. In particular, it is shown that when this preconditioner is adequately balanced, it tends to the Dirichlet-Neumann preconditioner because of the heterogeneity of the fluid-structure problem.

Downloads

Download data is not yet available.

References

Badia S., Nobile F., Vergara C., “ Fluid-structure partitioned procedures based on Robin transmission

conditions”, J. Comp. Phys., vol. 227, p. 7027-7051, 2008a.

Badia S., Nobile F., Vergara C., “ Robin-Robin preconditioned Krylov methods for fluidstructure

interaction problems”, Comput. Methods Appl. Mech. Engrg., vol. 198, n° 33-36,

p. 2768-2784, 2009.

Badia S., Quaini A., Quarteroni A., “ Modular vs. non-modular preconditioners for fluidstructure

systems with large added-mass effect”, Comput. Methods Appl. Mech. Engrg.,

vol. 197, n° 49-50, p. 4216-4232, 2008b.

Bathe K., Zhang H., “ Finite element developments for general fluid flows with structural interactions”,

Int. J. Num. Meth. Engng., 2004.

Batina J., “ Unsteady Euler airfoil solutions using unstructured dynamic meshes”, AIAA J., vol.

, n° 8, p. 1381-1388, 1990.

Bazilevs Y., Calo V., Hughes T., Zhang Y., Isogeometric Fluid-Structure Interaction: Theory,

Algorithms, and Computations, Technical Report n° 08-16, ICES, 2008.

Bazilevs Y., Calo V., Zhang Y., Hughes T., “ Isogeometric fluid-structure interaction analysis

with applications to arterial blood flow”, Comput. Mech., vol. 38, p. 310-322, 2006.

Burman E., Fernández M., “ Stabilization of explicit coupling in fluid-structure interaction involving

fluid incompressibility”, Comput. Methods Appl. Mech. Engrg., vol. 198, n° 5–8,

p. 766-784, 2009.

Caillerie D., Mourad A., A. R., “ Cell-to-muscle homogenization. Application to a constitutive

law for the myocardium”, Math. Model. Num. Anal., vol. 37, p. 681-698, 2003.

Causin P., Gerbeau J.-F., Nobile F., “ Added-mass effect in the design of partitioned algorithms

for fluid-structure problems”, Comp. Meth. Appl. Mech. Engng., vol. 194, n° 42–44, p. 4506-

, 2005.

Chapelle D., Bathe K., The Finite Element Analysis of Shells - Fundamentals, Springer Verlag,

a.

Chapelle D., Ferent A., “ Modeling of the inclusion of a reinforcing sheet within a 3D medium”,

Math. Models Methods Appl. Sci., vol. 13, n° 4, p. 573-595, 2003b.

Chapelle D., Ferent A., Bathe K., “ 3D-shell elements and their underlying mathematical

model”, Math. Models Methods Appl. Sci., vol. 14, n° 1, p. 105-142, 2004.

Chapelle D., Ferent A., Le Tallec P., “ The treatment of "pinching locking" in 3D-shell elements”,

M2AN Math. Model. Numer. Anal., vol. 37, n° 1, p. 143-158, 2003c.

Deparis S., Numerical Analysis of Axisymmetric Flows and Methods for Fluid-Structure Interaction

Arising in Blood Flow Simulation, PhD thesis, EPFL, Switzerland, 2004.

Deparis S., Discacciati M., Fourestey G., Quarteroni A., “ Fluid-structure algorithms based

on Steklov-Poincaré operators”, Comput. Methods Appl. Mech. Engrg., vol. 195, n° 41-43,

p. 5797-5812, 2006.

Deparis S., Discacciati M., Quarteroni A., “ A domain decomposition framework for fluidstructure

interaction problems”, Proceedings of the Third International Conference on Com-

putational Fluid Dynamics (ICCFD3), 2004.

Dettmer W., Peri´c D., “ A computational framework for fluid-structure interaction: Finite element

formulation and applications”, Comp. Meth. Appl. Mech. Engrg., vol. 195, n° 41-43,

p. 5754-5779, 2006.

Donéa J., Giuliani S., Halleux J. P., “ An arbitrary Lagrangian-Eulerian finite element method

for transient dynamic fluid-structure interactions”, Comp. Meth. Appl. Mech. Engng., vol.

, p. 689-723, 1982.

Farhat C., van der Zee K., Geuzaine P., “ Provably second-order time-accurate loosely-coupled

solution algorithms for transient nonlinear aeroelasticity”, Comp. Meth. Appl. Mech. En-

gng., vol. 195, n° 17-18, p. 1973-2001, 2006.

Felippa C., Park K., “ Staggered transient analysis procedures for coupled mechanical systems:

formulation”, Computer Methods in Applied Mechanics and Engineering, vol. 24, n° 1,

p. 61-111, 1980.

Felippa C., Park K., Farhat C., “ Partitioned analysis of coupled mechanical systems”, Computer

methods in applied mechanics and engineering, vol. 190, n° 24-25, p. 3247-3270, 2001.

Fernández M., Gerbeau J.-F., Grandmont C., “ A projection semi-implicit scheme for the coupling

of an elastic structure with an incompressible fluid”, Internat. J. Numer. Methods

Engrg., vol. 69, n° 4, p. 794-821, 2007.

Fernández M., Moubachir M., “ A Newton method using exact Jacobians for solving fluidstructure

coupling”, Comp. & Struct., vol. 83, p. 127-142, 2005.

Formaggia L., Gerbeau J.-F., Nobile F., Quarteroni A., “ On the Coupling of 3D and 1D Navier-

Stokes equations for Flow Problems in Compliant Vessels”, Comp. Meth. Appl. Mech. En-

grg., vol. 191, n° 6-7, p. 561-582, 2001.

Förster C., Wall W., Ramm E., “ Artificial Added Mass Instabilities in Sequential Staggered

Coupling of Nonlinear Structures and Incompressible Flows”, Comp. Meth. Appl. Mech.

Engrg., vol. 196, p. 1278-1293, 2006.

Fung Y., Fronek K., Patitucci P., “ Pseudoelasticity of arteries and the choice of its mathematical

expression”, Am. J. Physiol., vol. 237, p. 620-631, 1979.

Gee M., Küttler U., Wall W., “ Truly monolithic algebraic multigrid for fluid-structure interaction”,

Int. J. Numer. Meth. Engng., 2010. DOI: 10.1002/nme.3001.

Gerbeau J.-F., Vidrascu M., “ A quasi-Newton algorithm based on a reduced model for fluidstructure

interactions problems in blood flows”, Math. Model. Num. Anal., vol. 37, n° 4,

p. 631-648, 2003.

Gerbeau J.-F., Vidrascu M., Frey P., “ Fluid-Structure Interaction in Blood Flows on Geometries

based on Medical Imaging”, Comp. & Struct., vol. 83, n° 2-3, p. 155-165, 2005.

Guidoboni G., Glowinski R., Cavallini N., Canic S., “ Stable loosely-coupled-type algorithm

for fluid-structure interaction in blood flow”, Journal of Computational Physics, vol. 228,

n° 18, p. 6916-6937, 2009.

Heil M., “ An efficient solver for the fully coupled solution of large-displacement fluid-structure

interaction problems”, Comput. Methods Appl. Mech. Engrg., vol. 193, n° 1-2, p. 1-23, 2004.

Heil M., Hazel A., Boyle J., “ Solvers for large-displacement fluid-structure interaction problems:

Segregated vs. monolithic approaches”, Comp. Mech., vol. 43, p. 91-101, 2008.

Holzapfel A., Gasser T., R.W. O., “ A new constitutive framework for arterial wall mechanics

and a comparative study of material models”, J. Elasticity, vol. 61, p. 1-48, 2000.

Hron J., Turek S., “ A monolithic FEM/Multigrid solver for an ALE formulation of fluidstructure

interaction with applications in biomechanics”, Fluid-structure interaction - mod-

elling, simulation, optimisation, Computational Science and Engineering, vol. 53, Springer,

p. 146-170, 2006.

Hübner B., Walhorn E., Dinkle D., “ A monolithic approach to fluid-structure interaction using

space-time finite elements”, Comp. Meth. Appl. Mech. Engng., vol. 193, p. 2087-2104,

Küttler U., Gee M., Förster C., Comerford A., Wall W., “ Coupling strategies for biomedical

fluid-structure interaction problems”, Int. J. Numer. Meth. Biomed. Engng., vol. 26, n° 3-4,

p. 305-321, 2009.

Küttler U., Wall W., “ Fixed-point fluid-structure interaction solvers with dynamic relaxation”,

Comp. Mech., vol. 43, n° 1, p. 61-72, 2008.

Le Tallec P., “ Domain decomposition methods in computational mechanics”, Computational

Mechanics Advances, Vol. 1, no.2, North Holland, p. 123-217, 1994.

Le Tallec P., Mouro J., “ Fluid structure interaction with large structural displacements”, Com-

put. Meth. Appl. Mech. Engrg., vol. 190, p. 3039-3067, 2001.

Matthies H., Steindorf J., “ Partitioned but strongly coupled iteration schemes for nonlinear

fluid-structure interaction”, Comp. & Struct., vol. 80, n° 27–30, p. 1991-1999, 2002.

Matthies H., Steindorf J., “ Partitioned strong coupling algorithms for fluid-structure interaction”,

Comp. & Struct., vol. 81, p. 805-812, 2003.

Michler C., van Brummelen E., de Borst R., “ An interface Newton-Krylov solver for fluidstructure

interaction”, Int. J. Num. Meth. Fluids, vol. 47, n° 10-11, p. 1189-1195, 2005.

Michler C., van Brummelen E., de Borst R., “ Error-amplification analysis of subiterationpreconditioned

GMRES for fluid-structure interaction”, Comp. Meth. Appl. Mech. Engng.,

vol. 195, p. 2124-2148, 2006.

Mok D. P., Wall W. A., “ Partitioned analysis schemes for the transient interaction of incompressible

flows and nonlinear flexible structures”, in K. S.W.A.Wall, K.U. Bletzinger (ed.),

Trends in computational structural mechanics, CIMNE, Barcelona, 2001a.

Mok D. P., Wall W. A., Ramm E., “ Partitioned analysis approach for the transient, coupled

response of viscous fluids and flexible structures”, in W. Wunderlich (ed.), Proceedings of

the European Conference on Computational Mechanics, ECCM’99, TU Munich, 1999.

Mok D. P.,WallW. A., Ramm E., “ Accelerated iterative substructuring schemes for instationary

fluid-structure interaction”, in K. Bathe (ed.), Computational Fluid and Solid Mechanics,

Elsevier, p. 1325-1328, 2001b.

Nobile F., Numerical approximation of fluid-structure interaction problems with application to

haemodynamics, PhD thesis, EPFL, Switzerland, 2001.

Oijen C. H. v., Mechanics and design of fiber-reinforced vascular prostheses, PhD thesis, Technische

Universiteit Eindhoven, 2003.

Park K., Felippa C., DeRuntz J., “ Stabilization of staggered solution procedures for fluidstructure

interaction analysis”, Computational methods for fluid-structure interaction prob-

lems, p. 95-124, 1977.

Piperno S., Farhat C., Larrouturou B., “ Partitioned procedures for the transient solution of coupled

aeroelastic problems. Part I:Model problem, theory and two-dimensional application”,

Comp. Meth. Appl. Mech. Engrg., vol. 124, p. 79-112, 1995.

Quaini A., Quarteroni A., “ A semi-implicit approach for fluid-structure interaction based on an

algebraic fractional step method”, Math. Models Methods Appl. Sci., vol. 17, n° 6, p. 957-

, 2007.

Rugonyi S., Bathe K., “ On finite element analysis of fluid flows coupled with structural interaction”,

CMES - Comp. Modeling Eng. Sci., vol. 2, n° 2, p. 195-212, 2001.

Salsac A.-V., Fernández M., Chomaz J., Le Tallec P., “ Effects of the flexibility of the arterial

wall on the wall shear stresses and wall tension in abdominal aortic aneurysms”, Bulletin of

the American Physical Society, 2005.

Salsac A.-V., Sparks S., Chomaz J., Lasheras J., “ Evolution of the wall shear stresses during the

progressive enlargement of symmetric abdominal aortic aneurysms”, J. Fluid Mech., vol.

, p. 19-51, 2006.

Tezduyar T., “ Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces”,

Arch. Comput. Methods Engrg., vol. 8, p. 83-130, 2001.

Tezduyar T., Sathe S., Keedy R., Stein K., “ Space-time finite element techniques for computation

of fluid-structure interactions”, Comput. Meth. Appl. Mech. Engng., vol. 195, p. 2002-

, 2006.

Thomas P., Lombard C., “ Geometric conservation law and its application to flow computations

on moving grids”, AIAA J., vol. 17, n° 10, p. 1030-1037, 1979.

van Brummelen E., “ Added mass effects of compressible and incompressible flows in fluidstructure

interaction”, Journal of Applied Mechanics, vol. 76, n° 2, p. 021206-07, 2009.

van Brummelen E., van der Zee K., de Borst R., “ Space/time multigrid for a fluid-structure

interaction problem”, Applied Numerical Mathematics, vol. 58, n° 12, p. 1951-1971, 2008.

van der Zee K., van Brummelen E., Akkerman I., de Borst R., “ Goal-oriented error estimation

and adaptivity for fluid-structure interaction using exact linearized adjoint”, 2010, to appear

in Comp. Meth. Appl. Mech. Engng.

Vierendeels J., “ Implicit coupling of partioned fluid-structure interaction solvers using reduced

order models”, in M. S. H.J. Bungartz (ed.), Fluid-Structure interaction, Modelling, Simu-

lation, Optimization, Springer, p. 1-18, 2006.

Zhang H., Zhang X., Ji S., Guo Y. Ledezma G., Elabbasi N., deCougny H., “ Recent development

of fluid-structure interaction capabilities in the ADINA system”, Computers & Struc-

tures, vol. 81, n° 8-11, p. 1071-1085, 2003.

Downloads

Published

2010-08-06

How to Cite

Fernández, M. Ángel ., Gerbeau, J.-F. ., Gloria, A. ., & Vidrascu, M. . (2010). A partitioned Newton method for the interaction of a fluid and a 3D shell structure. European Journal of Computational Mechanics, 19(5-7), 479–512. https://doi.org/10.13052/EJCM.19.479-512

Issue

Section

Original Article