On the use of proper generalized decompositions for solving the multidimensional chemical master equation

Authors

  • Francisco Chinesta EADS Corporate Fundation Internantional Chair GEM, UMR CNRS - Centrale Nantes 1 rue de la Noe, BP 92101, 44321 Nantes cedex 3, France
  • Amine Ammar Laboratoire de Rhéologie 1301 rue de la piscine, BP 53 Domaine universitaire 38041 Grenoble cedex 9, France
  • Elías Cueto Group of Structural Mechanics and Materials Modelling Aragón Institute of Engineering Research (I3A) Universidad de Zaragoza. Maria de Luna, 3 E-50018 Zaragoza, Spain

DOI:

https://doi.org/10.13052/EJCM.19.53-64

Keywords:

proper generalized decomposition, multidimensional models, eparated representation, cell signalling

Abstract

In this paper we review the possibilities associated with the use of Proper Generalized Decompositions for solving models established in highly multidimensional spaces. This technique has also been recently extended to problems that can be, under some circumstances, seen as multidimensional.

Downloads

Download data is not yet available.

References

Ammar A.,Mokdad B., Chinesta F., , Keunings. R., « A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling of

complex fluids. Part II : transient simulation using space-time separated representations »,

J. Non-Newtonian Fluid Mech., vol. 144, p. 98-121, 2007.

Ammar A., Mokdad B., Chinesta F., Keunings R., « A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling of

complex fluids », J. Non-Newtonian Fluid Mech., vol. 139, p. 153-176, 2006.

Bungartz H.-J., Griebel M., « Sparse grids », Acta Numerica, vol. 13, p. 1-123, 2004.

Cancès E., Defranceschi M., Kutzelnigg W., Bris C. L., Maday Y., « Computational Quantum

Chemistry : a primer », Handbook of Numerical Analysis, vol. X, p. 3-270, 2003.

Chinesta F., Ammar A., Joyot P., « The Nanometric and Micrometric Scales of the Structure

and Mechanics of Materials Revisited : An Introduction to the Challenges of Fully Deterministic

Numerical Descriptions », International Journal for Multiscale Computational

Engineering, vol. 6, p. 191-213, 2008.

Hasty J., McMillen D., Isaacs F., Collins J. J., « Computational studies of gene regulatory

networks : in numero molecular Biology », Nature Reviews Genetics, vol. 2, p. 268-279,

Hegland M., Burden C., Santoso L., MacNamara S., Boothm H., « A solver for the stochastic

master equation applied to gene regulatory networks », Journal of Computational and

Applied Mathematics, vol. 205, p. 708-724, 2007.

Ladeveze P., Nonlinear Computational Structural Mechanics, Springer, N.Y., 1999.

Laughlin R. B., Pines D., « The Theory of Everything », Proceedings of the National Academy

of Sciences, vol. 97(1), p. 28-31, 2000.

Mokdad B., Pruliere E., Ammar A., Chinesta F., « On the Simulation of Kinetic TheoryModels

of Complex Fluids Using the Fokker-Planck Approach », Applied Rheology, vol. 17, p. 1-14,

Munsky B., Khammash M., « The finite state projection algorithm for the solution of the chemical

master equation », The Journal of Chemical Physics, vol. 124, n° 4, p. 044104, 2006.

Sreenath S. N., Cho K.-H., Wellstead P., « Modelling the dynamics of signalling pathways »,

Essays in biochemistry, vol. 45, p. 1-28, 2008.

Downloads

Published

2010-08-06

How to Cite

Chinesta, F. ., Ammar, A. ., & Cueto, E. . (2010). On the use of proper generalized decompositions for solving the multidimensional chemical master equation. European Journal of Computational Mechanics, 19(1-3), 53–64. https://doi.org/10.13052/EJCM.19.53-64

Issue

Section

Original Article