Polarization of contact forces in multi-contact systems
DOI:
https://doi.org/10.13052/EJCM.19.77-88Keywords:
discrete element method, multi-scale method, frictionAbstract
The aim of this study is to identify the homogenized laws modeling the overall behaviour of multi-contact systems. At the moment, these systems are generally analyzed either by continuum mechanics or micro-mechanics and a multi-scale approach. These approaches differ from the phenomenological approach traditionally used for modeling the behavior of solid materials which is based on mathematical formulations developed in the framework of thermodynamics, whose constants are determined from results of laboratory tests. The lack of basic physics in these formulations leads to mathematical models that are often complex and difficult to identify. The multi-scale approach appears well suited to address these difficulties. This study aims at quantification using the Discrete Element method (Jean, 1999; Fortin et al., 2005) polarization phenomena of contact forces.
Downloads
References
Chetouane B., Approche combinée d’éléments finis/éléments discrets pour la modélisation des
structures maçonnées, Thèse de doctorat, Université de Montpellier 2, 2004.
de Saxcé G., Fortin J., Millet O., « About the numerical simulation of the dynamics of granular
media and the definition of the mean stress tensor », Mechanics of Materials, vol. 36,
p. 1175-1184, 2004.
de Saxcé G., Feng Z. Q., « New inequality and functional for contact with friction : The implicit
standard material approach », Mechanics of Structures and Machines, vol. 19, no 3, p. 301-
, 1991.
Dumont S., Igbida N., « On a Dual Formulation for the Growing Sandpile Problem », European
Journal of Applied Mathematics, vol. 20, p. 169-185, 2009.
Fortin J., Simulation numérique de la dynamique des systèmes multicorps appliquée aux milieux
granulaires, Thèse de doctorat, Université de Lille 1, 2000.
Fortin J., Millet O., de Saxcé G., « Numerical simulation of granular materials by an improved
discrete element method », Int. J. Numer. Meth. Engng, vol. 62, p. 639-663, 2005.
Janssen H. A., « Versuche ¸bergetreichedruck in silozellen », Zeifschriftverein deutscher ingenieur,
vol. 39, p. 1045-1049, 1895.
Jean M., « The Non Smooth Contact Dynamics Method », Compt. M. Appl. Math. Engrg, vol.
, p. 235-257, 1999.
Lebon F., Rizzoni R., « Asymptotic study of soft thin layer : the non convex case », Mechanics
of Advanced Materials and Structures, vol. 15, p. 12-20, 2008.
Moreau J. J., « Sur les lois de frottement, de plasticité et de viscosité », C. R. Acad. Sci . Série
, vol. 271, p. 608-611, 1970.
Rahmoun J., Etude théorique et numérique du comportement des milieux granulaires, Thèse de
doctorat, Université de Lille1, 2006.
Renouf M., Bonamy D., Dubois F., Alart P., « Numerical simulation of two-dimensional steady
granular flows in rotating drums : on surface flow rheology », Physics of fluids, vol. 17,
p. 13303-13315, 2005.