Bayesian model updating with consideration of modeling error

Authors

  • Erliang Zhang Laboratoire Roberval de Mécanique, UMR 6253 Université de Technologie de Compiègne, France
  • Pierre Feissel Laboratoire Roberval de Mécanique, UMR 6253 Université de Technologie de Compiègne, France
  • Jérôme Antoni Laboratoire Roberval de Mécanique, UMR 6253 Université de Technologie de Compiègne, France

DOI:

https://doi.org/10.13052/EJCM.19.255-266

Keywords:

bayesian inference, modeling errors, polynomial chaos, hybrid modal model

Abstract

On account of measurement and modeling errors, structural identification is better tackled within the statistical framework. In this work, a complete process of Bayesian inference for the characterization of the dynamic behavior of a linear structure is presented in the frequency domain. The polynomial chaos expansion is adopted as a surrogate model to propagate the parameter uncertainty and thus accelerate the evaluation of their posterior probability distribution. Moreover, one hybrid modal model is proposed by introducing some additional variables so as to deal with the modeling errors. Bayesian updating is validated experimentally on a steel square plate and the proposed hybrid modal model is illustrated numerically on a cantilever beam.

Downloads

Download data is not yet available.

References

Calvettia D., Morigib S., Reichelc L., Sgallarid F., « Tikhonov Regularization and the L-curve

for Large Discrete Ill-posed Problems », Journal of Computational and Applied Mathematics,

vol. 123, p. 423-446, 2000.

Chen M., Q.M.Shao, lbrahim J., Monte Carlo Methods in Bayesian Computation, Springer,

Friswell M., Mottershead J., Finite Element Model Updating in Structural Dynamics, Springer,

Fu Z., He J., Modal Analysis, Butterworth-Heinemann Ltd, 2001.

Gawronski W., Sawicki J. T., « Response Errors of Non-Proportionally Lightly Damped Structures

», Journal of Sound and Vibration, vol. 200, n° 4, p. 543 - 550, 1997.

Ghanem R., Spanos P., Stochastic Finite Elements : A Spectral Approach, Springer, 1991.

HastingsW., « Monte Carlo Sampling Methods Using Markov Chains and Their Applications »,

Biometrika, vol. 57, p. 97 - 109, 1970.

Iman R., Latin Hypercube Sampling, Wiley-Encyclopedia of Statistical Sciences, 1999.

Jedrzejewski F., Introduction aux Méthodes Numériques, Springer, 2005.

Liang F.,WongW., « Real-Parameter Evolutionary Monte CarloWith Applications to Bayesian

Mixture Models », Journal of the American Statistical Association, vol. 96, n° 454, p. 653 -

, 2001.

Mottershead J., Friswell M., « Model Updating in Structural Dynamics : A Survey », Journal

of Sound and Vibration, vol. 167, n° 2, p. 347 - 375, 1993.

Natke H. G., « Problems of Model Updating Procedures : a Perspective Resumption », Mechanical

Systems and Signal Processing, vol. 12, n° 1, p. 65-74, 1998.

Pellissetti M., Capiez-Lernout E., Pradlwarter H., Soize C., Schuëller G., « Reliability analysis

of a satellite structure with a parametric and a non-parametric probabilistic model »,

Computer Methods in Applied Mechanics and Engineering, vol. 198, n° 2, p. 344 - 357,

Pintelon R., Schoukens J., System Identification : A Frequency Domain Approach, Wiley-IEEE

Press, 2001.

Rice J., Mathematical Statistics and Data Analysis, Duxbury Press, 1995.

Soize C., « A Comprehensive Overview of a Non-parametric Probabilistic Approach of Model

Uncertainties for Predictive Models in Structural Dynamics », Journal of Sound and

Vibration, vol. 288, n° 3, p. 623-652, 2005.

Tarantola A., Inverse Problem Theory and Methods for Model Parameter Etimation, SIAM

(Society of Industrial and Applied Mathematics), 2005.

Wiener N., « The Homogeneous Chaos », American Journal of Mathematics, vol. 60, n° 4,

p. 897 - 936, 1938.

Downloads

Published

2010-08-06

How to Cite

Zhang, E. ., Feissel, P. ., & Antoni, J. . (2010). Bayesian model updating with consideration of modeling error. European Journal of Computational Mechanics, 19(1-3), 255–266. https://doi.org/10.13052/EJCM.19.255-266

Issue

Section

Original Article