3D simulation of the matter transport by surface diffusion within a level-set context
DOI:
https://doi.org/10.13052/EJCM.19.281-292Keywords:
surface diffusion, level-set method, curvature, Laplace-Beltrami operator, sintering processAbstract
Within the framework of the sintering process simulation, this paper proposes a numerical strategy for the direct simulation of the matter transport by surface diffusion. A level-set method is used to describe the topological changes which arise at the free boundary of the sintering particles. The surface velocity is found to be proportional to the surface Laplacian of the curvature, that is, proportional to the fourth-order derivative of the level-set function. Consequently, both curvature and velocity must be computed carefully and with accuracy. Finally, three-dimensional simulations are shown and investigated.
Downloads
References
Ashby M., “ A first report on sintering diagrams”, Acta Metall. Mater., vol. 22, n° 3, p. 275-289,
Bänsch E., Morin P., Nochetto R. H., “ A finite element method for surface diffusion: the
parametric case”, J. Comput. Phys., vol. 203, n° 1, p. 321-343, February, 2005.
Bernacki M., Chastel Y., Coupez T., Logé R., “ Level set framework for the numerical modelling
of primary recrystallization in polycrystalline materials”, Scripta Mater., vol. 58, n° 12,
p. 1129-1132, 2008.
Bouvard D., McMeeking R., “ Deformation of interparticle necks by Diffusion-Controlled
Creep”, J. Am. Ceram. Soc., vol. 79, n° 3, p. 265-672, 1996.
Bruchon J., Digonnet H., Coupez T., “ Using a signed distance function for the simulation of
metal forming processes: Formulation of the contact condition and mesh adaptation. From
a Lagrangian approach to an Eulerian approach”, Int. J. Numer. Meth. Eng., vol. 78, n° 8,
p. 980-1008, 2009a.
Bruchon J., Pacquaut G., Drapier S., Valdivieso F., “ Modélisation et simulation du transport
de matière par diffusion surfacique à l’aide d’une approche Level-Set”, Actes du 9ième
Colloque National en Calcul des Structures, Giens (Var, France), p. 517-522, May 25-29,
b.
Burger M., Hausser F., Stocker C., Voigt A., “ A level-set approach to anisotropic flows with
curvature regularization”, J. Comput. Phys., vol. 225, n° 1, p. 183-205, 2007.
Coupez T., “ Réinitialisation convective et locale des fonctions Level Set pour le mouvement de
surfaces et d’interfaces.”, Actes des Journées Activités Universitaires de Mécanique, ISBN
-9526-8123-8, La Rochelle, p. 33-41, August 31st - September 1st, 2006.
Digonnet H., Coupez T., “ Object-oriented programming for fast-and-easy development of parallel
applications in forming processes simulation”, Proceedings of the Second MIT Conference
on Computational Fluid and Solid Mechanics, 2003.
Osher S., Fedkiw F., “ Level Set Methods: An Overview and Some Recent Results”, J. Comput.
Phys., vol. 169, n° 2, p. 463-502, 2001.
Rahaman M. N., Ceramic processing and sintering, CRC Press, 2003.
Sethian J., Level Sets Methods and Fast Marching Methods, 3 edn, Cambridge Monograph on
Applied and Computational Mathematics, 1999.