An immersed boundary/level-set method for incompressible viscous flows in complex geometries with good conservation properties
DOI:
https://doi.org/10.13052/EJCM.18.561-587Keywords:
incompressible viscous flows, immersed boundary methods, level-set methodsAbstract
This paper concerns the development of a new Cartesian grid / immersed boundary (IB) method for the computation of incompressible viscous flows in irregular geometries. In IB methods, the computational grid is not aligned with the irregular boundary, and of upmost importance for accuracy and stability is the discretization in cells which are “cut" by the boundary. In this paper, we present an IB method (the LS-STAG method) based on the Cartesian MAC method where the irregular boundary is represented by its level-set function. This implicit representation of the immersed boundary enables us to discretize efficiently the fluxes in the cut-cells by imposing the strict conservation of total kinetic energy at the discrete level. The accuracy and robustness of our method are assessed on benchmark flows.
Downloads
References
Bergmann M., Cordier L., Brancher J. P., “ Drag minimization of the cylinder wake by trustregion
proper orthogonal decomposition”, in R. King (ed.), Notes on Numerical Fluid Mechanics
and Multidisciplinary Design, p. 309-324, 2007.
Botella O., “ On a collocation B-spline method for the solution of the Navier-Stokes equations”,
Computers & Fluids, vol. 31, p. 397-420, 2002.
Cheny Y., Botella O., “ La méthode LS-STAG : une nouvelle approche de type Frontière
Immergée/"Level-Set"’ pour le calcul d’écoulements visqueux incompressibles en
géométries complexes”, 18ème Congrès Français de Mécanique, Grenoble, 27-31 Août,
Chung M.-H., “ Cartesian cut cell approach for simulating incompressible flows with rigid
bodies of arbitrary shape”, Computers and Fluids, vol. 35, p. 607-623, 2006.
Dröge M., Verstappen R., “ A new symmetry-preserving Cartesian-grid method for computing
flow past arbitrarily shaped objects”, Int. J. Numer. Meth. Fluids, vol. 47, p. 979-985, 2005.
Eymard R., Gallouet T., Herbin R., “ Finite volume methods”, in P. Ciarlet, J. L. Lions (eds),
Handbook for Numerical Analysis, p. 715-1022, 2000.
Fadlun E. A., Verzicco R., Orlandi P., Mohd-Yusof J., “ Combined immersed-boundary finitedifference
methods for three dimensional complex flow simulations”, J. Comput. Phys., vol.
, p. 35-60, 2000.
Gibou F., Fedkiw R. P., Cheng L.-T., KangM., “ A second-order-accurate symmetric discretization
of the Poisson equation on Irregular Domains”, J. Comput. Phys., vol. 176, p. 205-227,
Guyon E., Hulin J. P., Petit L., Physical Hydrodynamics, Oxford University Press, Oxford,
Harlow F. H., Welch J. E., “ Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surfaces”, Phys. Fluids, vol. 8, p. 2181-2189, 1965.
Hart J. C., “ Sphere tracing : a geometric method for the antialiased ray tracing of implicit
surfaces”, The Visual Computer, vol. 12, p. 527-545, 1996.
He J. W., Glowinski R., Metcalfe R., Nordlander A., Périaux J., “ Active control and drag optimization
for flow past a circular cylinder. Part 1. Oscillatory cylinder rotation”, J. Comput.
Phys., vol. 163, p. 87-117, 2000.
Henderson R. D., “ Nonlinear dynamics and pattern formation in turbulent wake transition”, J.
Fluid Mech., vol. 352, p. 65-112, 1997.
Kang S., Iaccarino G., Moin P., “ Accurate and efficient immersed-boundary interpolations for
viscous flows”, , In Center for Turbulence Research Briefs, NASA Ames/Stanford University,
pp. 31-43, 2004.
Linnick M. N., Fasel H. F., “ A high order immersed interface method for simulating unsteady
incompressible flows on irregular domains”, J. Comput. Phys., vol. 204, p. 157-192, 2005.
Mittal R., Dong H., BozkurttasM., Najjar F.M., Vargas A., v. Loebbecke A., “ A Versatile sharp
interface immersed boundary method for incompressible flows with complex boundaries”,
J. Comput. Phys., vol. 227, p. 4825-4852, 2008.
Mittal R., Iaccarino G., “ Immersed Boundary Methods”, Annu. Rev. Fluid Mech., vol. 37,
p. 239-261, 2005.
Morinishi Y., Lund T. S., Vasilyev O. V., Moin P., “ Fully conservative higher order finite
difference schemes for incompressible flow”, J. Comput. Phys., vol. 143, p. 90-124, 1998.
Muldoon F., Acharya S., “ A divergence-free interpolation scheme for the immersed boundary
method”, Int. J. Numer. Meth. Fluids., vol. 56, p. 1845-1884, 2008.
Osher S., Fedkiw R. P., Level Set Methods and Dynamic Implicit Surfaces, Springer, New-York,
Osher S., Sethian J. A., “ Fronts propagating with curvature dependent speed: Algorithms based
on Hamilton-Jacobi formulations”, Journal of Computational Physics, vol. 79, p. 12-49,
Patankar S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New-York, 1980.
Pironneau O., Finite Element Method for Fluids, Wiley, 1989.
Sussman M., Smereka S., Osher S., “ A level set approach for computing solutions to incompressible
two-phase flow”, Journal of Computational Physics, vol. 114, p. 146-159, 1994.
van Kan J., Vuik C., Wesseling P., “ Fast pressure calculation for 2D and 3D time dependent
incompressible flow”, Numer. Linear Algebra Appl., vol. 7, p. 429-447, 2000.
Verstappen R. W. C. P., Veldman A. E. P., “ Symmetry-preserving discretization of turbulent
flow”, J. Comput. Phys., vol. 187, p. 343-368, 2003.
Ye T., Mittal R., Udaykumar H. S., ShyyW., “ An Accurate Cartesian Grid Method for Viscous
Incompressible Flows with Complex Immersed Boundaries”, J. Comput. Phys., vol. 156,
p. 209-240, 1999.
Yeckel A., Derby J. J., “ On setting a pressure datum when computing incompressible flows”,
International Journal for Numerical Methods in Fluids, vol. 29, p. 19-34, 1999.
Zdravkovich M. M., Flow Around Circular Cylinders. Volume 1 : Fundamentals, Oxford University
Press, Oxford, 2003.