Exact and efficient interpolation using finite elements shape functions

Authors

  • Gustavo H.C. Silva École Nationale Supérieure des Mines de Saint-Étienne 158, cours Fauriel
  • Rodolphe Le Riche École Nationale Supérieure des Mines de Saint-Étienne 158, cours Fauriel F-42023 Saint-Étienne cedex 2
  • Jérôme Molimard École Nationale Supérieure des Mines de Saint-Étienne 158, cours Fauriel F-42023 Saint-Étienne cedex 2
  • Alain Vautrin École Nationale Supérieure des Mines de Saint-Étienne 158, cours Fauriel F-42023 Saint-Étienne cedex 2

DOI:

https://doi.org/10.13052/EJCM.18.307-331

Keywords:

identification, interpolation, finite elements, field measurements

Abstract

The comparison of finite elements (FE) and experimental data fields have become ever more prevalent in numerical simulations. Since FE and experimental data fields rarely match, the interpolation of one field into the other is a fundamental step of the procedure. When one of the fields comes from FE, using the existing FE mesh and shape functions is a natural choice to determine mesh degrees of freedom at data point coordinates. This makes no assumptions beyond those already made in the FE model. In this sense, interpolation using element shape functions is exact. However, crude implementations of this technique generally display a quadratic computation complexity with respect to mesh size and number of data points, which is impractical when large data fields must be compared repeatedly. This document aims at assembling existing numerical procedures to improve the interpolation efficiency. With a combination of cross-products, bounding-boxes and indexing methods, the resulting algorithm shows linear computation cost, providing significant improvement in efficiency.

Downloads

Download data is not yet available.

References

ABAQUS Inc., ABAQUS/CAE user’s manual : version 6.4., Pawtucket, RI : ABAQUS, 2003.

Amiot F., Hild F., Roger J. P., “ Identification of elastic property and loading fields from fullfield

displacement measurements”, International Journal of Solids and Structures, vol. 44,

n° 9, p. 2863-2887, May, 2007.

Avril S., Pierron F., “ General framework for the identification of constitutive parameters from

full-field measurements in linear elasticity”, International Journal of Solids and Structures,

vol. 44, n° 14-15, p. 4978-5002, July, 2007.

Barber B. C., Dobkin D. P., Huhdanpaa H., “ The quickhull algorithm for convex hulls”, ACM

Trans. Math. Softw., vol. 22, n° 4, p. 469-483, 1996.

Beckert A., “ Coupling fluid (CFD) and structural (FE) models using finite interpolation elements”,

Aerospace Science and Technology, vol. 4, n° 1, p. 13 - 22, January, 2000.

Bledzki A. K., Kessler A., Rikards R., Chate A., “ Determination of elastic constants of

glass/epoxy unidirectional laminates by the vibration testing of plates”, Composites Science

and Technology, vol. 59, n° 13, p. 2015-2024, October, 1999.

Bourke P., “ Determining if a point lies on the interior of a polygon”, online tutorials,

Crawley, AU., November, 1989. Available http://local.wasp.uwa.edu.au/

pbourke/geometry/insidepoly/index.html.

Bruno L., Furgiuele F. M., Pagnotta L., Poggialini A., “ A full-field approach for the elastic

characterization of anisotropic materials”, Optics and Lasers in Engineering, vol. 37,

p. 417-431, April, 2002.

Cardenas-Garcia J. F., Preidikman S., “ Solution of the moire hole drilling method using a finiteelement-

method-based approach”, International Journal of Solids and Structures, vol. 43,

n° 22-23, p. 6751-6766, November, 2006.

Cressie N., Statistics for spatial data, 1st edn,Wiley-Interscience, New York, 15 January, 1993.

Cugnoni J., Gmur T., Schorderet A., “ Identification by modal analysis of composite structures

modelled with FSDT and HSDT laminated shell finite elements”, Composites Part

A-Applied Science and Manufacturing, vol. 35, n° 7-8, p. 977 - 987, 2004.

Faucher V., Combescure A., “ A time and space mortar method for coupling linear modal subdomains

and non-linear subdomains in explicit structural dynamics”, Computer Methods in

Applied Mechanics and Engineering, vol. 192, n° 5-6, p. 509-533, January, 2003.

Fukushima Y., Cayol V., Durand P., “ Finding realistic dike models from interferometric synthetic

aperture radar data: The February 2000 eruption at Piton de la Fournaise”, Journal of

Geophysical Research-Solid Earth, 23 March, 2005.

Genovese K., Lamberti L., Pappalettere C., “ Mechanical characterization of hyperelastic materials

with fringe projection and optimization techniques”, Optics and Lasers in Engineering,

vol. 44, p. 423-442, May, 2006.

Grediac M., “ The use of full-field measurement methods in composite material characterization:

interest and limitations”, Composites Part A: Applied Science and Manufacturing, vol.

, n° 7-8, p. 751-761, July, 2004.

Hill B. M., Harris D. B., Vyas J., Debian GNU/Linux 3.1 Bible, JohnWiley & Sons, New York,

Kajberg J., Lindkvist G., “ Characterisation of materials subjected to large strains by inverse

modelling based on in-plane displacement fields”, International Journal of Solids and

Structures, vol. 41, n° 13, p. 3439-3459, February, 2004.

Lin S. T., Rowlands R. E., “ Hybrid stress analysis”, Optics and Lasers in Engineering, vol. 32,

n° 3, p. 257-298, September, 1999.

Mathworks, Matlab: The language of technical computing, 7 edn, Mathworks, Natic, June,

Meuwissen M. H. H., Oomens C.W. J., Baaijens F. P. T., Petterson R., Janssen J. D., “ Determination

of the elasto-plastic properties of aluminium using a mixed numerical-experimental

method”, Journal of Materials Processing Technology, vol. 75, n° 1-3, p. 204 - 211, March,

Molimard J., Le Riche R., Vautrin A., Lee J., “ Identification of the four orthotropic plate

stiffnesses using a single open-hole tensile test”, Experimental Mechanics, vol. 45, n° 5,

p. 404-411, 2005.

Nikishkov G., “ Generating contours on FEM/BEM higher-order surfaces using Java 3D textures”,

Advances in Engineering Software, vol. 34, n° 8, p. 469-476, August, 2003.

Padmanabhan S., Hubner J. P., Kumar A. V., Ifju P. G., “ Load and boundary condition calibration

using full-field strain measurement”, Experimental Mechanics, vol. 46, n° 5, p. 569 -

, October, 2006.

Pagnacco E., Moreau A., Lemosse D., “ Inverse strategies for the identification of elastic and

viscoelastic material parameters using full-field measurements”, Materials Science and Engineering:

A, vol. 452-453, p. 737-745, April, 2007.

Rassineux A., Maillage automatique tridimentionnel par une méthode frontale pour la méthode

des éléments finis, PhD thesis, Université Henri Poincaré, Vandoeuvre les Nancy, France,

(in French).

Rumpf M., “ Recent numerical methods - A challenge for efficient visualization”, Future Generation

Computer Systems, vol. 15, n° 1, p. 43-58, September, 1999.

Sandwell D. T., “ Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data”,

Geophysical Research Letters, vol. 12, n° 2, p. 139-142, February, 1987.

Silva G. H. C., Le Riche R., Molimard J., Vautrin A., “ Aspects numériques de la comparaison

éléments finis-mesures de champs: Application à l’identification de propriétés de matériaux”,

Huitième colloque national en calcul des structures, vol. 1, Lavoisier, Giens, p. 287-

, May, 2007a.

Silva G. H. C., Le Riche R., Molimard J., Vautrin A., Exact and efficient interpolation using

finite element shape functions, Technical report, LTDS, St. Etienne, France, 4 January,

b. available https://hal.archives-ouvertes.fr/hal-00122640/en/.

Van Loon R., Anderson P. D., Van de Vosse F. N., “ A fluid-structure interaction method with

solid-rigid contact for heart valve dynamics”, Journal of Computational Physics, vol. 217,

n° 2, p. 806 - 823, SEP 20, 2006.

Wang Y., Cuitino A. M., “ Full-field measurements of heterogeneous deformation patterns on

polymeric foams using digital image correlation”, International Journal of Solids and Structures,

vol. 39, n° 13-14, p. 3777 - 3796, JUN-JUL, 2002.

Downloads

Published

2009-08-10

How to Cite

Silva, G. H. ., Riche, R. L. ., Molimard, J. ., & Vautrin, A. . (2009). Exact and efficient interpolation using finite elements shape functions. European Journal of Computational Mechanics, 18(3-4), 307–331. https://doi.org/10.13052/EJCM.18.307-331

Issue

Section

Original Article