Exact and efficient interpolation using finite elements shape functions
DOI:
https://doi.org/10.13052/EJCM.18.307-331Keywords:
identification, interpolation, finite elements, field measurementsAbstract
The comparison of finite elements (FE) and experimental data fields have become ever more prevalent in numerical simulations. Since FE and experimental data fields rarely match, the interpolation of one field into the other is a fundamental step of the procedure. When one of the fields comes from FE, using the existing FE mesh and shape functions is a natural choice to determine mesh degrees of freedom at data point coordinates. This makes no assumptions beyond those already made in the FE model. In this sense, interpolation using element shape functions is exact. However, crude implementations of this technique generally display a quadratic computation complexity with respect to mesh size and number of data points, which is impractical when large data fields must be compared repeatedly. This document aims at assembling existing numerical procedures to improve the interpolation efficiency. With a combination of cross-products, bounding-boxes and indexing methods, the resulting algorithm shows linear computation cost, providing significant improvement in efficiency.
Downloads
References
ABAQUS Inc., ABAQUS/CAE user’s manual : version 6.4., Pawtucket, RI : ABAQUS, 2003.
Amiot F., Hild F., Roger J. P., “ Identification of elastic property and loading fields from fullfield
displacement measurements”, International Journal of Solids and Structures, vol. 44,
n° 9, p. 2863-2887, May, 2007.
Avril S., Pierron F., “ General framework for the identification of constitutive parameters from
full-field measurements in linear elasticity”, International Journal of Solids and Structures,
vol. 44, n° 14-15, p. 4978-5002, July, 2007.
Barber B. C., Dobkin D. P., Huhdanpaa H., “ The quickhull algorithm for convex hulls”, ACM
Trans. Math. Softw., vol. 22, n° 4, p. 469-483, 1996.
Beckert A., “ Coupling fluid (CFD) and structural (FE) models using finite interpolation elements”,
Aerospace Science and Technology, vol. 4, n° 1, p. 13 - 22, January, 2000.
Bledzki A. K., Kessler A., Rikards R., Chate A., “ Determination of elastic constants of
glass/epoxy unidirectional laminates by the vibration testing of plates”, Composites Science
and Technology, vol. 59, n° 13, p. 2015-2024, October, 1999.
Bourke P., “ Determining if a point lies on the interior of a polygon”, online tutorials,
Crawley, AU., November, 1989. Available http://local.wasp.uwa.edu.au/
pbourke/geometry/insidepoly/index.html.
Bruno L., Furgiuele F. M., Pagnotta L., Poggialini A., “ A full-field approach for the elastic
characterization of anisotropic materials”, Optics and Lasers in Engineering, vol. 37,
p. 417-431, April, 2002.
Cardenas-Garcia J. F., Preidikman S., “ Solution of the moire hole drilling method using a finiteelement-
method-based approach”, International Journal of Solids and Structures, vol. 43,
n° 22-23, p. 6751-6766, November, 2006.
Cressie N., Statistics for spatial data, 1st edn,Wiley-Interscience, New York, 15 January, 1993.
Cugnoni J., Gmur T., Schorderet A., “ Identification by modal analysis of composite structures
modelled with FSDT and HSDT laminated shell finite elements”, Composites Part
A-Applied Science and Manufacturing, vol. 35, n° 7-8, p. 977 - 987, 2004.
Faucher V., Combescure A., “ A time and space mortar method for coupling linear modal subdomains
and non-linear subdomains in explicit structural dynamics”, Computer Methods in
Applied Mechanics and Engineering, vol. 192, n° 5-6, p. 509-533, January, 2003.
Fukushima Y., Cayol V., Durand P., “ Finding realistic dike models from interferometric synthetic
aperture radar data: The February 2000 eruption at Piton de la Fournaise”, Journal of
Geophysical Research-Solid Earth, 23 March, 2005.
Genovese K., Lamberti L., Pappalettere C., “ Mechanical characterization of hyperelastic materials
with fringe projection and optimization techniques”, Optics and Lasers in Engineering,
vol. 44, p. 423-442, May, 2006.
Grediac M., “ The use of full-field measurement methods in composite material characterization:
interest and limitations”, Composites Part A: Applied Science and Manufacturing, vol.
, n° 7-8, p. 751-761, July, 2004.
Hill B. M., Harris D. B., Vyas J., Debian GNU/Linux 3.1 Bible, JohnWiley & Sons, New York,
Kajberg J., Lindkvist G., “ Characterisation of materials subjected to large strains by inverse
modelling based on in-plane displacement fields”, International Journal of Solids and
Structures, vol. 41, n° 13, p. 3439-3459, February, 2004.
Lin S. T., Rowlands R. E., “ Hybrid stress analysis”, Optics and Lasers in Engineering, vol. 32,
n° 3, p. 257-298, September, 1999.
Mathworks, Matlab: The language of technical computing, 7 edn, Mathworks, Natic, June,
Meuwissen M. H. H., Oomens C.W. J., Baaijens F. P. T., Petterson R., Janssen J. D., “ Determination
of the elasto-plastic properties of aluminium using a mixed numerical-experimental
method”, Journal of Materials Processing Technology, vol. 75, n° 1-3, p. 204 - 211, March,
Molimard J., Le Riche R., Vautrin A., Lee J., “ Identification of the four orthotropic plate
stiffnesses using a single open-hole tensile test”, Experimental Mechanics, vol. 45, n° 5,
p. 404-411, 2005.
Nikishkov G., “ Generating contours on FEM/BEM higher-order surfaces using Java 3D textures”,
Advances in Engineering Software, vol. 34, n° 8, p. 469-476, August, 2003.
Padmanabhan S., Hubner J. P., Kumar A. V., Ifju P. G., “ Load and boundary condition calibration
using full-field strain measurement”, Experimental Mechanics, vol. 46, n° 5, p. 569 -
, October, 2006.
Pagnacco E., Moreau A., Lemosse D., “ Inverse strategies for the identification of elastic and
viscoelastic material parameters using full-field measurements”, Materials Science and Engineering:
A, vol. 452-453, p. 737-745, April, 2007.
Rassineux A., Maillage automatique tridimentionnel par une méthode frontale pour la méthode
des éléments finis, PhD thesis, Université Henri Poincaré, Vandoeuvre les Nancy, France,
(in French).
Rumpf M., “ Recent numerical methods - A challenge for efficient visualization”, Future Generation
Computer Systems, vol. 15, n° 1, p. 43-58, September, 1999.
Sandwell D. T., “ Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data”,
Geophysical Research Letters, vol. 12, n° 2, p. 139-142, February, 1987.
Silva G. H. C., Le Riche R., Molimard J., Vautrin A., “ Aspects numériques de la comparaison
éléments finis-mesures de champs: Application à l’identification de propriétés de matériaux”,
Huitième colloque national en calcul des structures, vol. 1, Lavoisier, Giens, p. 287-
, May, 2007a.
Silva G. H. C., Le Riche R., Molimard J., Vautrin A., Exact and efficient interpolation using
finite element shape functions, Technical report, LTDS, St. Etienne, France, 4 January,
b. available https://hal.archives-ouvertes.fr/hal-00122640/en/.
Van Loon R., Anderson P. D., Van de Vosse F. N., “ A fluid-structure interaction method with
solid-rigid contact for heart valve dynamics”, Journal of Computational Physics, vol. 217,
n° 2, p. 806 - 823, SEP 20, 2006.
Wang Y., Cuitino A. M., “ Full-field measurements of heterogeneous deformation patterns on
polymeric foams using digital image correlation”, International Journal of Solids and Structures,
vol. 39, n° 13-14, p. 3777 - 3796, JUN-JUL, 2002.