Parameter identification for anisotropic plasticity model using digital image correlation

Comparison between uni-axial and bi-axial tensile testing

Authors

  • David Lecompte Department of Materials and Construction Royal Military Academy, Avenue de la Renaissance 30, 1000 Brussels, Belgium
  • Steven Cooreman Department of Mechanical Engineering Technical University KaHo Sint-Lieven,Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
  • Sam Coppieters Department of Mechanical Engineering Technical University KaHo Sint-Lieven,Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
  • John Vantomme Department of Materials and Construction Royal Military Academy, Avenue de la Renaissance 30, 1000 Brussels, Belgium
  • Hugo Sol Department of Mechanics of Materials and Constructions Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
  • Dimitri Debruyne Department of Mechanical Engineering Technical University KaHo Sint-Lieven,Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

DOI:

https://doi.org/10.13052/EJCM.18.393-418

Keywords:

digital image correlation, material identification, inverse modelling

Abstract

The basic principle of the described procedure for plastic material identification is the generation of a complex and heterogeneous deformation field, which is measured by digital image correlation (DIC) and compared to Finite Element (FE) simulations. In this paper two tests for the identification of the hardening behaviour and the yield locus of DC06 steel are compared: a uni-axial test on a perforated rectangular specimen and a bi-axial tensile test on a cruciform specimen. The work hardening of the material is assumed to be isotropic and the yield locus is modelled by the anisotropic Hill48 criterion. The identification results for the different material parameters, based on both the uni- and the bi-axial test, are discussed and show a significant agreement.

Downloads

Download data is not yet available.

References

Boogaard A. H., Thermally Enhanced Forming of Aluminium Sheet, Twente University,

Twente, The Netherlands, 2002.

Bruck H.A., McNeil S.R., Sutton M.A. and Peters W.H., “Digital Image Correlation using

Newton-Raphson Method of Partial Differential Correction”, Experimental Mechanics,

vol. 29, n° 3, 1989, p. 261-267.

Bruhns O. T. and Anding D. K., “On the simultaneous estimation of model parameters used in

constitutive laws for inelastic material behaviour”, International Journal of Plasticity,

, vol. 15, p. 1311-1340.

Chaudonneret M., Gilles P., Labourdette R., Policella H., « Machine d’essais de traction biaxiale

pour essais statiques et dynamiques », La Recherche Aérospatiale, vol. 5, 1977,

p. 299-305.

Cheng et al., “Full-field Speckle Pattern Image Correlation with B-Spline Deformation

Function”, Experimental Mechanics, 42, 2002, p. 344-352.

Chu T.C., Ranson W.F., Sutton M.A. and Peters W.W., “Applications of Digital Image

Correlation Techniques to Experimental Mechanics”, Experimental Mechanics, vol. 25,

n° 3, 1985, p. 232-244.

Dawicke D.S., Pollock W.D., Bi-axial testing of 2219-T87 aluminum alloy using cruciform

specimens, Nasa Contractor Report 4782, 2000, p. 1-46.

Flores P., Development of experimental equipment and identification procedures for sheet

metal constitutive laws, PhD thesis, University of Liège, 2006.

Gavrus A. and Massoni E. and Chenot J. L., “An inverse analysis using a finite element

model for identification of rheological parameters,” Journal of Materials Processing

Technology, 1996, vol. 60, p. 447-454.

Grediac M., Pierron F., “Applying the virtual fields method to the identification of elasto-plastic

constitutive parameters”, International Journal of Plasticity, vol. 22, 2006, p. 602-627.

Kajberg J. and Lindkvist G., “Characterisation of materials subjected to large strains by

inverse modelling based on in-plane displacement fields”, International Journal of Solids

and Structures, vol. 41, n° 13, 2004, p. 3439-3459.

Khalfallah A., BelHadjSalah H., Dogui A., “Anisotropic parameter identification using

inhomogeneous tensile test”, European journal of Mechanics A/Solids, 21, 2002, p. 927-942.

Knauss W.G., Chasiotis I., Huang Y., “Mechanical measurements at the micron and

nanometer scales”, Mechanics of materials 35, 2003, p. 217-231.

Lam Y. C. and Khoddam S. and Thomson P. F., “Inverse computational method for

constitutive parameters obtained from torsion, plane-strain and axisymmetric compression

tests”, Journal of Materials Processing Technology, 1998, vol. 83, p. 62-71.

Lecompte D., Smits A., Sol H., Vantomme J., Van Hemelrijck D., “Mixed numericalexperimental

technique for orthotropic parameter identification using biaxial tensile tests

on cruciform specimens”, International Journal of Solids and Structures 44, 2007,

p. 1643-1656.

Lecompte D., Elastic and Elasto-Plastic material parameter identification by inverse

modelling of static tests using digital image correlation, PhD thesis, Vrije Universiteit

Brussel, 2007.

Mahnken R. and Stein E., “A unified approach for parameter identification of inelastic

material models in the frame of the finite element method”, Comput. Methods Appl.

Mech. Eng.,1996, vol. 136, p. 225-258.

Mahnken R., “Aspects on the finite-element implementation of the Gurson model including

parameter identification,” International Journal of Plasticity, vol. 15, 1999, p. 1111-1137.

Mahnken R. and Stein E., “Parameter identification for finite deformation elasto-plasticity in

principal directions”, Comput. Methods Appl. Mech. Eng., 1997,vol. 147, p. 17-39.

Makinde A., Thibodeau L., Neale K.W., “Development of an apparatus for bi-axial testing

using cruciform specimens”, Experimental mechanics, vol. 32/2, 1992, p. 138-144.

Meuwissen M., An Inverse Method for the Mechanical Characterization of Metals, Ph.D.

thesis, Eindhoven University of Technology, Netherlands, 1998.

Pannier Y., Avril S., Rotinat R., Peirron F., “Identification of elasto-plastic constitutive

parameters from statically undetermined tests using the virtual fields method”,

Experimental Mechanics, vol. 46/6, 2006, p. 735-755.

Peters W.H. and Ranson W.F., “Digital imaging techniques on experimental stress analysis”,

Optical Engineering, vol 21, n° 3, 1982, p. 427-431.

Schreier H.W., Braasch J.R., Sutton M.A., “Systematic errors in digital image correlation caused

by intensity interpolation”, Optical Engineering, vol. 39, n° 11, 2000, p. 2915-2921.

Smits A., Van Hemelrijck D., Philippidis T.P. and Cardon A., “Design of a cruciform

specimen for biaxial testing of fibre reinforced composite laminates”, Composites Science

and Technology, vol. 66, n° 7-8, 2006, p. 964-975.

Springmann M. and Kuna M., “Identification of material parameters of the Gurson-

Tvergaard-Needleman model by combined experimental and numerical techniques”,

Computational Materials Science, vol. 32, 2005, p. 544-552.

Sutton M.A., Wolters W.J., Peters W.H., Ranson W.F. and McNeil S.R., “Determination of

Displacements using an Improved Digital Correlation Method”, Image Vision Computing,

vol. 1, n° 3, 1983, p. 133-139.

Sutton M.A., Cheng M., Peters W.H., Chao Y.J. and McNeil S.R., “Application of an

Optimized Digital Image Correlation Method to Planar Deformation Analysis”, Image

Vision Comp., vol. 4, n° 3, 1986, p. 143-150.

Sutton M.A., McNeil S.R., Jang J. and Babai M., “The Effect of Subpixel Image Restauration

on Digital Image Correlation Estimates”, Optical Engineering, vol. 27, n° 10, 1988,

p. 870-877.

Vegter H., Ten Horn C. et al., “Characterization and modelling of the plastic material

behaviour and its application in sheet metal forming simulation”, Proceedings of

COMPLAS VII, Barcelona, 2003.

Yoneyama S., Kikuta H., Kitagawa A. and Kitamura K., “Lens Distortion Correction for

Digital Image Correlation by Measuring Rigid Body Displacement”, Optical Engineering,

vol. 45, n° 2, 2006, p. 1-9.

Downloads

Published

2009-07-15

How to Cite

Lecompte, D., Cooreman, S. ., Coppieters, S. ., Vantomme, J. ., Sol, H. ., & Debruyne, D. . (2009). Parameter identification for anisotropic plasticity model using digital image correlation: Comparison between uni-axial and bi-axial tensile testing. European Journal of Computational Mechanics, 18(3-4), 393–418. https://doi.org/10.13052/EJCM.18.393-418

Issue

Section

Original Article