Parameter identification for anisotropic plasticity model using digital image correlation
Comparison between uni-axial and bi-axial tensile testing
DOI:
https://doi.org/10.13052/EJCM.18.393-418Keywords:
digital image correlation, material identification, inverse modellingAbstract
The basic principle of the described procedure for plastic material identification is the generation of a complex and heterogeneous deformation field, which is measured by digital image correlation (DIC) and compared to Finite Element (FE) simulations. In this paper two tests for the identification of the hardening behaviour and the yield locus of DC06 steel are compared: a uni-axial test on a perforated rectangular specimen and a bi-axial tensile test on a cruciform specimen. The work hardening of the material is assumed to be isotropic and the yield locus is modelled by the anisotropic Hill48 criterion. The identification results for the different material parameters, based on both the uni- and the bi-axial test, are discussed and show a significant agreement.
Downloads
References
Boogaard A. H., Thermally Enhanced Forming of Aluminium Sheet, Twente University,
Twente, The Netherlands, 2002.
Bruck H.A., McNeil S.R., Sutton M.A. and Peters W.H., “Digital Image Correlation using
Newton-Raphson Method of Partial Differential Correction”, Experimental Mechanics,
vol. 29, n° 3, 1989, p. 261-267.
Bruhns O. T. and Anding D. K., “On the simultaneous estimation of model parameters used in
constitutive laws for inelastic material behaviour”, International Journal of Plasticity,
, vol. 15, p. 1311-1340.
Chaudonneret M., Gilles P., Labourdette R., Policella H., « Machine d’essais de traction biaxiale
pour essais statiques et dynamiques », La Recherche Aérospatiale, vol. 5, 1977,
p. 299-305.
Cheng et al., “Full-field Speckle Pattern Image Correlation with B-Spline Deformation
Function”, Experimental Mechanics, 42, 2002, p. 344-352.
Chu T.C., Ranson W.F., Sutton M.A. and Peters W.W., “Applications of Digital Image
Correlation Techniques to Experimental Mechanics”, Experimental Mechanics, vol. 25,
n° 3, 1985, p. 232-244.
Dawicke D.S., Pollock W.D., Bi-axial testing of 2219-T87 aluminum alloy using cruciform
specimens, Nasa Contractor Report 4782, 2000, p. 1-46.
Flores P., Development of experimental equipment and identification procedures for sheet
metal constitutive laws, PhD thesis, University of Liège, 2006.
Gavrus A. and Massoni E. and Chenot J. L., “An inverse analysis using a finite element
model for identification of rheological parameters,” Journal of Materials Processing
Technology, 1996, vol. 60, p. 447-454.
Grediac M., Pierron F., “Applying the virtual fields method to the identification of elasto-plastic
constitutive parameters”, International Journal of Plasticity, vol. 22, 2006, p. 602-627.
Kajberg J. and Lindkvist G., “Characterisation of materials subjected to large strains by
inverse modelling based on in-plane displacement fields”, International Journal of Solids
and Structures, vol. 41, n° 13, 2004, p. 3439-3459.
Khalfallah A., BelHadjSalah H., Dogui A., “Anisotropic parameter identification using
inhomogeneous tensile test”, European journal of Mechanics A/Solids, 21, 2002, p. 927-942.
Knauss W.G., Chasiotis I., Huang Y., “Mechanical measurements at the micron and
nanometer scales”, Mechanics of materials 35, 2003, p. 217-231.
Lam Y. C. and Khoddam S. and Thomson P. F., “Inverse computational method for
constitutive parameters obtained from torsion, plane-strain and axisymmetric compression
tests”, Journal of Materials Processing Technology, 1998, vol. 83, p. 62-71.
Lecompte D., Smits A., Sol H., Vantomme J., Van Hemelrijck D., “Mixed numericalexperimental
technique for orthotropic parameter identification using biaxial tensile tests
on cruciform specimens”, International Journal of Solids and Structures 44, 2007,
p. 1643-1656.
Lecompte D., Elastic and Elasto-Plastic material parameter identification by inverse
modelling of static tests using digital image correlation, PhD thesis, Vrije Universiteit
Brussel, 2007.
Mahnken R. and Stein E., “A unified approach for parameter identification of inelastic
material models in the frame of the finite element method”, Comput. Methods Appl.
Mech. Eng.,1996, vol. 136, p. 225-258.
Mahnken R., “Aspects on the finite-element implementation of the Gurson model including
parameter identification,” International Journal of Plasticity, vol. 15, 1999, p. 1111-1137.
Mahnken R. and Stein E., “Parameter identification for finite deformation elasto-plasticity in
principal directions”, Comput. Methods Appl. Mech. Eng., 1997,vol. 147, p. 17-39.
Makinde A., Thibodeau L., Neale K.W., “Development of an apparatus for bi-axial testing
using cruciform specimens”, Experimental mechanics, vol. 32/2, 1992, p. 138-144.
Meuwissen M., An Inverse Method for the Mechanical Characterization of Metals, Ph.D.
thesis, Eindhoven University of Technology, Netherlands, 1998.
Pannier Y., Avril S., Rotinat R., Peirron F., “Identification of elasto-plastic constitutive
parameters from statically undetermined tests using the virtual fields method”,
Experimental Mechanics, vol. 46/6, 2006, p. 735-755.
Peters W.H. and Ranson W.F., “Digital imaging techniques on experimental stress analysis”,
Optical Engineering, vol 21, n° 3, 1982, p. 427-431.
Schreier H.W., Braasch J.R., Sutton M.A., “Systematic errors in digital image correlation caused
by intensity interpolation”, Optical Engineering, vol. 39, n° 11, 2000, p. 2915-2921.
Smits A., Van Hemelrijck D., Philippidis T.P. and Cardon A., “Design of a cruciform
specimen for biaxial testing of fibre reinforced composite laminates”, Composites Science
and Technology, vol. 66, n° 7-8, 2006, p. 964-975.
Springmann M. and Kuna M., “Identification of material parameters of the Gurson-
Tvergaard-Needleman model by combined experimental and numerical techniques”,
Computational Materials Science, vol. 32, 2005, p. 544-552.
Sutton M.A., Wolters W.J., Peters W.H., Ranson W.F. and McNeil S.R., “Determination of
Displacements using an Improved Digital Correlation Method”, Image Vision Computing,
vol. 1, n° 3, 1983, p. 133-139.
Sutton M.A., Cheng M., Peters W.H., Chao Y.J. and McNeil S.R., “Application of an
Optimized Digital Image Correlation Method to Planar Deformation Analysis”, Image
Vision Comp., vol. 4, n° 3, 1986, p. 143-150.
Sutton M.A., McNeil S.R., Jang J. and Babai M., “The Effect of Subpixel Image Restauration
on Digital Image Correlation Estimates”, Optical Engineering, vol. 27, n° 10, 1988,
p. 870-877.
Vegter H., Ten Horn C. et al., “Characterization and modelling of the plastic material
behaviour and its application in sheet metal forming simulation”, Proceedings of
COMPLAS VII, Barcelona, 2003.
Yoneyama S., Kikuta H., Kitagawa A. and Kitamura K., “Lens Distortion Correction for
Digital Image Correlation by Measuring Rigid Body Displacement”, Optical Engineering,
vol. 45, n° 2, 2006, p. 1-9.