Mixed finite element for modelling interfaces

Authors

  • Salah Bouziane Department of Civil Engineering, University of Skikda, Skikda, Algeria Bouziane_21@yahoo.fr
  • Hamoudi Bouzerd Department of Civil Engineering, University of Skikda, Skikda, Algeria Bouziane_21@yahoo.fr
  • Mohamed Guenfoud Laboratory of Civil Engineering and Hydraulic University of Guelma Guelma, Algeria

DOI:

https://doi.org/10.13052/EJCM.18.155-175

Keywords:

mixed finite element, interface, Reissner’s mixed variational principle, modelling

Abstract

A special finite element based on Reissner’s mixed variational principle has been presented to model interface between two materials. The present element is a 7-node two dimensional mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed interface finite element ensures the continuity of stress and displacement vectors at the interface on the coherent part and the discontinuity of this one on the cracked part. This element has been formulated starting from a parent element in a natural plane with an aim of modelling different types of interfaces with various orientations. This work is essentially devoted to the formulation of the interface element and the study of convergence and validation of this element. Results obtained from the present mixed interface element have been shown to be in good agreement with the analytical solutions.

Downloads

Download data is not yet available.

References

Aivazzadeh S., Eléments finis d’interface. Application aux assemblages collés et structures

stratifiées, Thèse de docteur-ingénieur, Université de Technologie de Compiègne, 1984.

Alturi S. N., S. Gallagher S., Zienkiewicz O. C., Hybrid and mixed finite element method,

New York, John Willey and Sons, 1983.

Bambole A. N., Desai Y. M., “Hybrid-interface finite element for laminated composite and

sandwich beams”, Finite Elements in Analysis and Design, 43, 2007, p. 1023-1036.

Bichara M., Formulation d’éléments d’interface. Application aux assemblages collés, Thèse

de doctorat, Université Paris VI, 1990.

Bouzerd H., Elément fini mixte pour interface cohérente ou fissurée, Thèse de doctorat,

Université de Claude Bernard, Lyon I, 1992.

Carrera E., “C0 Reissner-Mindlin multilayered plate elements including zig-zag and

interlaminar stress continuity”, Int. J. Num. Meth. Engng., 39, 1996, p. 1797-1820.

Carrera E. “Mixed layer-wise models for multilayered plates analysis”, Compos. Struct., 43,

, p. 57-70.

Carrera E., “Transverse normal stress effects in multilayered plates”, ASME J. Appl. Mech.,

, 1999, p. 1004-1011.

Desai Y. M., Ramtekkar G. Y., “Mixed finite element model for laminated composite beams”,

Struct. Eng. Mech., 13, 2002, p. 261-276.

Gallagher R. H., Introduction aux éléments finis, Paris, Pluralis (traduction française), 1976.

Habib M., Eléments finis axisymétriques d’interface pour l’analyse des structures stratifiées et

des assemblages collés, Thèse de doctorat, Université de Claude Bernard, Lyon I, 1989.

Herrmann L. R., “A bending analysis for plates”, Proc. Conf. Matrix Methods in Structural

Mechanics, AFFDL-TR-66-80, 1966, p. 577-604.

Mahapatra R. C., Dasgupta S. P., “The mixed finite element method in elastic and

elastoplastic axisymmetric problems”, Comput. Struct., 30, 1988, p. 1047-1065.

Mirza F. A., Olson M. D., “The mixed finite element method in plane elasticity”, Int. J. Num.

Meth. Engng., vol. 15, 1980, p. 273-289.

Noor A. K., Multified (mixed and hybrid) finite elements models, State of the art surveys in

finite element technology, ASME, chapter 5, 1983, p. 127-162.

Pagano N. J., “Exact solutions for rectangular bidimensionnal composite and sandwich

plates”, Journal of Composite Materials, vol. 4, 1970, p. 20-35.

Ramtekkar G. S., Desai Y. M., Shah A. H., “Mixed finite element model for thick composite

laminated plates”, Mech. Adv. Mater. Struct., 9, 2002, p. 133-156.

Ramtekkar G. S., Desai Y. M., Shah A. H., “Application of three-dimensional mixed finite

element model to the flexure of sandwich plate”, Comput. Struct., 81, 2003, p. 2183-2198.

Reissner E., “On a variational theorem of elasticity”, Journal of Mathematics and Physics,

vol. 29, 1950, p. 90-95.

Sarhan-Bajbouj A., Eléments finis d’interface pour le calcul des structures hétérogènes, Thèse

de doctorat, Université de Claude Bernard, Lyon I, 1990.

Shi Y. B., Chen H. R., “A mixed finite element for interlaminar stress computation”, Compos.

Strut., 20, 1992, p. 127-136.

Verchery G., Méthodes numériques de calcul des champs de contraintes dans les matériaux

hétérogènes, Calcul des Structures et Intelligence Artificielle, Fouet J. M., Ladeveze P.,

Ohayon R., vol. 1, Paris, Pluralis, 1987, p. 7-21.

Wu C. P., Lin C. C., “Analysis of sandwich plates using mixed finite element”, Compos. Strut.

, 1993, p. 397-405.

Downloads

Published

2009-08-12

How to Cite

Bouziane, S. ., Bouzerd, H. ., & Guenfoud, M. . (2009). Mixed finite element for modelling interfaces. European Journal of Computational Mechanics, 18(2), 155–175. https://doi.org/10.13052/EJCM.18.155-175

Issue

Section

Original Article