In vivo measurements of blood viscosity and wall stiffness in the carotid using PC-MRI
DOI:
https://doi.org/10.13052/EJCM.18.9-20Keywords:
MRI, identification, blood viscosity, artery elasticity, Womersley flowAbstract
A method is proposed for deducing blood viscosity and wall stiffness in the carotid from Phase-Contrast MRI data. The approach is based on Womersley’s model of blood flow derived from the resolution of the Navier-Stokes equations, assuming blood as a Newtonian fluid and the artery as a linear elastic cylindrical pipe. After presenting its principle, the approach is applied to the experimental data obtained on a single volunteer. Promising results are obtained.
Downloads
References
Asmar R., Benetos A., Topouchian J., Laurent P., Pannier B., Brisac A., Target R., Levy B.,
« Assessment of Arterial Distensibility by Automatic PulseWave Velocity Measurement »,
Hypertension, vol. 26, p. 485-490, 1995.
Draney M., Herfkens R., Hugues T., Pelc N.,Wedding K., Zarins C., Taylor C., « Quantification
of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging »,
Annals of Biomedical Engineering, vol. 30, p. 1033-1045, 2002.
Fronek K., Schmid-Shoenbein G., Fung Y., « A non-contact method for the three-dimensional
analysis of vascular elasticity in vivo and in vitro », Journal of applied physiology, vol. 40,
p. 634-637, 1976.
Hansen B., Menkis A., Vesely A., « Longitudinal and radial distensibility of the porcine aortic
root », Annals of thoracic surgeons, vol. 60, p. 384-390, 1995.
Hardt S., Just A., Bekeredjian R., Kubler W., Kirchheim H., Kuecherer H., « Aortic pressurediameter
relationship assessed by intravascular ultrasound: experimental validation in
dogs », IVUS for measurement of aortic wall motion, The American physiological society,
H1078-H1085, 1999.
Hornak J., The basics of MRI, http://www.cis.rit.edu/htbooks/mri, 2007.
Lagrée P.-Y., « An inverse technique to deduce the elasticity of a large artery », The European
Physical Journal - Applied Physics, vol. 9, p. 153-163, 2000.
Li Z.-Y., Howarth S., Trivedi R., U-King-Im J., Graves M., Brown A., Wang L., Gillard J.,
« Stress analysis of carotid plaque rupture based on in vivo high resolution MRI », Journal
of Biomechanics, vol. 39, p. 2611-2622, 2006.
Liepsch D., « An introduction to biofluid mechanics - Basic models and applications », Journal
of Biomechanics, vol. 35, p. 415-435, 2002.
Lighthill J., Waves in fluids, Cambridge Mathematical Library, Cambridge, UK, 2002.
MacRobbie D., Moore E., Graves M., Prince M., MRI: From Picture to Proton, Cambridge
University Press, 2003.
Maurits N., G.E. L., A.E.P. V., « The influence of vessel wall elasticity and peripheral resistance
on the carotid artery flow wave form: A CFD model compared to in vivo ultrasound
measurements », Journal of Biomechanics, vol. 40, p. 427-437, 2007.
McDonald D., Blood Flow in Arteries, Edward Arnold Publishers Inc., London, UK, 1974.
Moreno M., Moore J., Meuli R., « Cross-sectional deformation of the aorta as measured with
magnetic resonance imaging », Journal of Biomechanical Engineering, Transactions of the
ASME, vol. 120, p. 18-21, 1998.
Selzer R., Mack W., Lee P., Kwong-Fu H., Hodis H., « Improved common carotid elasticity
and intima-media thickness measurements from computer analysis of sequential ultrasound
frames », Atherosclerosis, vol. 154, p. 185-193, 2001.
Shin S., Keum D.-Y., « Measurement of blood viscosity using mass-detecting sensor », Biosensors
and Bioelectronics, vol. 17, p. 383-388, 2002.
Stephanis C., Mourmouras D., Tsagadopoulos D., « On the elastic properties of arteries »,
Journal of Biomechanics, vol. 36, p. 1727-1731, 2003.