Microextensometry and mechanical behaviour of Haversian cortical bone
DOI:
https://doi.org/10.13052/EJCM.18.93-104Keywords:
cortical bone, microextensometry, finite element, multiscale methodAbstract
It is well known that bone microarchitecture is mainly the result of the bone remodelling process. However, a mechanistic framework describing how the microstructure affects the mechanical behaviour of bone is still lacking. Therefore, tools to quantify bone quality at the microstructure scale are required. To address this problem, the present study focused on the measurements of the local strains over a large microstructure area using microextensometry. First, the relationship between the local strains and the mineral content was examined. Then, the local strains were used to feed an inverse approach performed by finite elements. The results show there is no correlation between the strain and the mineral content. Moreover, the implementation of the mineral content in finite elements simulations gave a better estimate of the experimental strain field.
Downloads
References
Ascenzi A., Baschieri P., Bienvenuti A., “The bending properties of single osteons”, J.
Biomechanics, vol. 23, 1990, p. 763-771.
Bloebaum R.D., Skedros J.G., Vajda E.G., Bachus K.N., Constantz B.R., “Determining
mineral content variations in bone using backscattered electron imaging”, Bone, vol. 20,
, p. 485-490.
Bousson V., Meunier A., Bergot C., Vicaut E., Rocha M.A., Morais M.H., Laval-Jeantet
A.M., Laredo J.D., “Distribution of intracortical porosity in human midfemoral cortex by
age and gender”, J. Bone Miner. Res., vol. 16, 2001, p. 1308-1317.
Burr D.B., Forwood M.R., Fyhrie D.P., Martin R.B., Schaffler M.B., Turner C.H., “Bone
microdamage and skeletal fragility in osteoporotic and stress fracture”, J. bone Miner.
Res., vol. 12, 1997, p. 6-15.
Cowin S.C., Handbook of bone mechanics, Boca Raton, CRC Press, 2001.
Currey J.D., Bones: structure and mechanics, Princeton, Princeton University Press, 2002.
Currey J.D., “How well are bones designed to resist fracture”, J. bone Miner. Res., vol. 18,
, p. 591-598.
Doumalin P., Bornert M., Crépin J., “Characterization of the strain distribution in
heterogeneous materials”, Mécanique et Industrie, vol. 4, 2003, p. 607-617.
Ho ba tho M.C, Rho J.Y., Ashman R.B., Atlas of mechanical properties of human cortical
and cancellous bone, Van der perre G., Lowet G., Borgwardt A. (Eds), In vivo
assessment of bone quality by vibration and wave propagation techniques Part II. ACCO
Publishing, Leuwen, 1991, p. 7-32.
Hoc T., Rey C., Viaris de Lesegno, “Mesostructure of the localization in prestrained mild
steel”, Scripta Materialia, vol. 42, 2000, p. 749-754.
Hoc T., Crepin J., Gelebart L., Zaoui A., “A procedure for identifying the plastic behavior
of single crystals from the local response of polycrystals”, Acta Materialia, vol. 51, 2003,
p. 5477-5488.
Hoc T., Henry L., Verdier M., Aubry D., Sedel L., Meunier A., “Effect of microstructure on
the mechanical properties of Haversian cortical bone”, Bone, vol. 38, 2006, p. 466-474.
Katz J.L., The structure and biomechanics of bone In mechanical properties of biological
materials, edited by J.F. Currey and J.F.V. Vincent, Cambridge university press,
Cambridge, 1980, p. 137-168.
Nicollela D., Nicholls A., Lankford J., Davy D., “Machine vision photogrammetry: a
technique for measurement of microstructural strain in cortical bone”, J. Biomechanics,
vol. 34, 2001, p. 135-139.
Pilvin P., Notice d’utilisation de Sidolo version 2.4. Technical report, Décembre 1998,
Ecole Centrale Paris.
Rho J., Zioupos P., Currey J.D., Pharr G.M., “Variations in the individual thick lamellar
properties within osteons by nanoindentation”, Bone, vol. 25, 1999, p. 295-300.
Roschger P., Plenk Jr. H., Klaushofer K., Eschberger J., “A new scanning electron
microscopy approach to the quantification of bone mineral distribution: backscattered
electron image grey-levels correlated to calcium Ka-line intensities”, Scanning
Microscopy, vol. 9, 1995, p. 75-88.