A human skin ultrasonic imaging to analyse its mechanical properties

Authors

  • Alexandre Delalleau Laboratoire de Tribologie et Dynamique des Systèmes UMR 5513 ENISE, 58 rue Jean Parot F-42023 Saint-Etienne cedex 02 andInstitut de Recherche Pierre Fabre, Centre de Recherche sur la Peau Hôtel Dieu Saint Jacques, 2 rue Viguerie, BP 3071 F-31025 Toulouse cedex 3
  • Gwendal Josse Institut de Recherche Pierre Fabre, Centre de Recherche sur la Peau Hôtel Dieu Saint Jacques, 2 rue Viguerie, BP 3071 F-31025 Toulouse cedex 3
  • Jérôme George Institut de Recherche Pierre Fabre, Centre de Recherche sur la Peau Hôtel Dieu Saint Jacques, 2 rue Viguerie, BP 3071 F-31025 Toulouse cedex 3
  • Yassine Mofid Laboratoire UltraSons, Signaux et Instumentation, FRE 2448 CNRS Faculté de Médecine, 10 bd du tonnelé, BP 3223, F-37032 Tours cedex
  • Frédéric Ossant Laboratoire UltraSons, Signaux et Instumentation, FRE 2448 CNRS Faculté de Médecine, 10 bd du tonnelé, BP 3223, F-37032 Tours cedex
  • Jean-Michel Lagarde Laboratoire UltraSons, Signaux et Instumentation, FRE 2448 CNRS Faculté de Médecine, 10 bd du tonnelé, BP 3223, F-37032 Tours cedex

DOI:

https://doi.org/10.13052/EJCM.18.105-116

Keywords:

skin, finite elements, elastography, ultrasound, inverse method, behaviour

Abstract

The analysis of the skin mechanical behaviour is a key-point for different field of investigation. As the skin is a complex structure, studies are usually based on inverse methods that compare experimental and finite element numerical results. Besides the considered behaviour law, one of the most important question concerns the geometrical aspects of the skin tissue. In this paper, it is shown how high frequency ultrasound imaging helps the calculation of skin mechanical parameters. The hypodermis influence is firstly discussed through elastographic analyses. A specific procedure to measure the dermis thickness is then proposed to highlight that such a measurement must be considered to draw reliable conclusions. The obtained results are finally discussed to point out the interest of such simplifications for the study of more complex behaviour laws.

Downloads

Download data is not yet available.

References

Agache P., Varchon D., Rochefort A., Humbert P., “Non invasive assessement of biaxial Young’s

modulus of human skin in vivo”, Journal of Biomechanics, vol. 25, 1992, p. 115-120.

Agache P., Physiologie de la peau et explorations fonctionnelles cutanées, Collection

explorations fonctionnelles humaines, 2000.

Cook T., Alexander H., Cohen M., “Experimental method for determining the 2-dimensional

mechanical properties of living human skin”, Medical and Biological Engineering and

Computing, vol. 15, 1977, p. 381-390.

Delalleau A., Josse G., Lagarde J.-M., Zahouani H., Bergheau J.-M., “A nonlinear elastic

behaviour to assess the mechanical parameters of human skin in vivo”, Skin Research and

Technology, accepted July 2007a, available online.

Delalleau A., Josse G., Lagarde J.-M., Zahouani H., Bergheau J-M., “Use of the Kalman

Filters for the analysis of the mechanical properties of human skin in vivo”, Inverse

Problems in Science and Engineering, accepted May 2007b.

Delalleau A., Analyse du comportement mécanique de la peau in vivo, PhD. Thesis, Jean

Monnet University, Saint-Etienne, France, 2007.

Diridollou S., Berson M., Vabre V., Black D., Karlsson B., Auriol F., Gregoire J.-M.,

Yvon C., Vaillan L., Gall Y., Patat F., “An in vivo method for measuring the mechanical

properties of the skin using ultrasound”, Ultrasound in Medecine and Biology, vol. 24,

n° 2, 1998, p. 215-224.

Diridollou S., Patat F., Gens F., Vaillant L., Black D., Lagarde J-M., Gall Y., Berson M., “In

vivo model of the mechanical properties of the human skin under suction”, Skin Research

and technology, vol. 6, n° 21, 2000, p. 221-225.

Hendricks F.M., Brokken D., van Eemeren J.T.W., Oomens C.W.J., Baijens F.P.T.,

Horsten J.B.A.M., “A numerical-experimental method to characterize the non-linear mechanical

behaviour of human skin”, Skin Research and Technology, vol. 9, 2003, p. 274-283.

Hendricks F.M., Brokken D., Oomens C.W.J., Bader D.L., Baijens F.P.T., « The relative

contributions of different skin layers to the mechanical behaviours of human skin in vivo

using suction experiments », Medical Engineering and Physics, vol. 28, 2006, p. 259-266.

Kass M., Witkin A., Terzopoulos D., “Snakes: active contour model”, International Journal

of Computer Vision, 1987, vol. 1, p. 321-331.

Khatyr F., Imberdis C., Vescovo P., Varchon D., Lagarde J-M., “Model of the viscoelastic

behaviour of skin in vivo and study of anisotropy”, Skin Research and Technology, vol. 10,

, p. 96-103.

Lagarde J.-M., George J., Soulcié R., Black D., “Automatic measurement of dermal thickness

from B-scan ultrasound images using active contours”, Skin Research and Technology,

vol. 11, n° 2, 2005, p. 79-90.

Mofid Y., Ossan F., Imberdis C., Patat F., “New elastographic algorithm for in vivo study of

mechanical behaviour of skin”, Proceedings of the international conference on

Ultrasounds Measurement and Imaging of Tissue Elasticity, 2004, p. 59.

Mofid Y., Ossant F., Imberdis C., Josse G., Patat F., “In vivo imaging of the skin under

stresses: Potential of high-frequency (20MHz) static 2-D elastography”, IEEE Transactions

on Ultrasonics, Ferrolectrics and Frequency Control, vol. 53, n° 5, 2006, p. 925-935.

Oomens C.W.J., van Campen D.H., Grootenboer H.J., “A mixture approach to the mechanics

of skin”, Journal of Biomechanics, vol. 20, n° 9, 1987, p. 877-885.

Ossant F., Patat F., Mofid Y., Gahagnon S., Josse G., “In vivo high frequency elastography

for mechanical behaviour of human skin under suction stress: elastograms and kinetics of

shear, axial and lateral strain fields”, IEEE Ultrasonics Symposium, 2006, p.1041-1044.

Pailler-Mattéi C., Caractérisations mécanique et Tribologique de la peau humaine in vivo,

PhD Thesis, Ecole Centrale de Lyon, France, 2004.

Panisset F., Varchon D., Agache P., “Non invasive measurement of stratum corneum Young’s

modulus in vivo”, XIVth Congress on Biomechanics, Paris, 1994.

Papir Y.S., Hsu H-H., Wildnauer R.H., “The mechanical properties of stratum corneum. I.

The effect of water and ambient temperature on the tensile properties of newborn rat

stratum corneum”, Biochimica et Biophysica acta, vol. 399, 1975, p. 170-180.

Samani A., Bishop J., Yaffe M., Plewes D.B., “Biomechanical 3-D Finite Element Modeling

of the Human Breast for MR/X-ray using MRI Data”, IEEE Transactions on Medical

Imaging, vol. 20, n° 4, 2001, p. 271-279.

Samani A., Bishop J., Luginbuhl C., Plewes D.B., “Measuring the elastic modulus of ex vivo

small tissue sample”, Physics in Medicine and Biology, vol. 48, 2003, p. 2183-2198.

Tran H.V., Charleux F., Ehrlacher A., Ho Ba Tho M-C., « Propriétés mécaniques multicouches

de la peau humain in vivo, modèle numérique anatomique », Proceedings of the 7e

Colloque National en Calcul des Structures de Giens, 2005.

Treloar L.R.G., “Stresses and birefringence in rubber subjected to general homogeneous

strain”, Proceedings of the Physical Society in London, vol. 60, p. 135-144, 1947.

Wilkes G.L., Brown I.A., Wildnauer R.H., “The biomechanical properties of skin”, Critical

Reviews in Bioengineering, vol. 1, n° 4, 1973, p. 453-495.

Downloads

Published

2009-08-12

How to Cite

Delalleau, A. ., Josse, G. ., George, J. ., Mofid, Y. ., Ossant, F. ., & Lagarde, J.-M. . (2009). A human skin ultrasonic imaging to analyse its mechanical properties. European Journal of Computational Mechanics, 18(1), 105–116. https://doi.org/10.13052/EJCM.18.105-116

Issue

Section

Original Article