A reactive poroelastic model to predict the periprosthetic tissue healing

Authors

  • Dominique Ambard Laboratoire de Mécanique et Génie Civil, UMR 5508 Université Montpellier II CC 048 Place Eugène Bataillon F-34095 Montpellier cedex 5
  • Gaëtan Guérin Laboratoire de Biomécanique, EA3697 Université Toulouse III CHU Purpan, Place Dr Baylac F-31049 Toulouse cedex
  • Pascal Swider Laboratoire de Biomécanique, EA3697 Université Toulouse III CHU Purpan, Place Dr Baylac F-31049 Toulouse cedex

DOI:

https://doi.org/10.13052/EJCM.18.131-143

Keywords:

biomathematics, osteointegration, poroelastic, finite element, osteoblast

Abstract

Conditions influencing the implant osteointegration in the early post-operative period include the surgical technique and coupled mechanical and biochemical factors. We hypothesized that coupling deformable porous media mechanics to governing equations of cell migration, might help to predict the periprosthetic tissue healing and in particular the heterogeneous bone formation which is unfavourable to the implant survival. To proceed, a multiphasic model of porous tissue surrounding a loaded implant was coupled to osteoblast migration and immature bone deposit. A finite element resolution was implemented and the application concerned a canine implant. The sensitivity analysis using volume strain as variable showed that compression was rather unfavourable to homogenous distribution of periprosthetic bone healing.

Downloads

Download data is not yet available.

References

Alliston T. N., Derynck R., Skeletal growth factors., Lippincott Williams /& Wilkins, chapter

Transforming Growth Factor- in Skeletal Development and Maintenance, p. 233-249,

Ambard D., Swider P., “ A predictive mechano-biological model of the bone-implant healing”,

European Journal of Mechanics - A/Solids, vol. 25, n° 6, p. 927-937, November-December,

Ames-William F., Numerical methods for partial differential equations, Academic press New

York San Fransisco, 1977.

Arramon Y., Naumann E., Bone Mechanics Handbook, chapter The intrinsic Permeability of

Cancellous Bone, p. 25-17, 2001.

Bailon-Plaza A., Van-Der-Meulen M., “ A Mathematical Framework to Study the Effects of

Growth Factor Influences on Fracture Healing”, Journal of theoritical Biologie, vol. 212,

p. 191-209, 2001.

Bechtold J. E., Kubic V., Søballe K., “ A controlled experimental model of revision implants:

Part I. Development”, Acta Orthop Scand, vol. 72, n° 6, p. 642-649, Dec, 2001a.

Bechtold J. E., Mouzin O., Kidder L., Søballe K., “ A controlled experimental model of revision

implants: Part II. Implementation with loaded titanium implants and bone graft”, Acta

Orthop Scand, vol. 72, n° 6, p. 650-656, Dec, 2001b.

Carter D. R., “ Mechanical loading history and skeletal biology”, Journal of Biomechanics, vol.

, p. 1095-1109, 1987.

Carter D. R., Blenman P. R., al, “ Correlations between mechanical stress history and tissue

differentiation in initial fracture healing”, J. Orthop. Res, vol. 6, p. 736-748, 1988.

Conover C. A., Skeletal Growth factors, Philadelphia, Lippincott Williams /& Wilkins, chapter

Insulin-like Growth Factors and the Skeleton, p. 101-116, 2000.

Dee-Kay C., Thomas T., X, “ Osteoblast population migration characteristics on substrates

modified with immobilized adhesive peptides”, Biomaterials, vol. 20, p. 221-227, 1999.

Dhatt G., Touzot G., Une présentation de la méthode des éléments finis. Deuxième Edition,

Université de Compiegne, 1984.

Friedl P., Zanker K. S., Brocker E. B., “ Cell migration strategies in 3-D extracellular matrix:

differences in morphology, cell matrix interactions, and integrin function”, Microsc Res

Tech, vol. 43, n° 5, p. 369-378, Dec, 1998.

Fung Y., Biomechanics Mechanical properties of living tissues, New York, Springer Verlag,

Hahn M., Vogel M., X, “ Bone structure changes in hip joint endoprosthesis implantation over

the course of many years. A quantitative study”, Chirurg, vol. 59, p. 782-787, 1988.

Huiskes R., Ruimerman R., van Lenthe G. H., Janssen J. D., “ Effects of mechanical forces on

maintenance and adaptation of form in trabecular bone”, Nature, vol. 405, n° 6787, p. 704-

, Jun, 2000.

Kibbin M. B., “ The biology of fracture healing in long bones”, J Bone Joint Surg.Am, vol. 79,

p. 1938-1941, 1997.

Kunzler T. P., Drobek T., Schuler M., Spencer N. D., “ Systematic study of osteoblast and

fibroblast response to roughness by means of surface-morphology gradients”, Biomaterials,

vol. 28, p. 2175-2182, 2007.

Lacroix D., Simulation of tissue differentiation during fracture healing, PhD thesis, University

of Dublin, 2000.

Linckart T. A., Mohan S., “ Growth factors for bone growth and repair”, Bone, vol. 19, p. 1-12,

Maheshwari G., Lauffenburger D. A., “ Deconstructing (and reconstructing) Cell Migration”,

Microscopy research and technique, vol. 43, p. 358-368, 1998.

Meinel L., Zoidis E., Zapf J., Hassa P., Hottiger M. O., Auer J. A., Schneider R., Gander B.,

Luginbuehl V., Bettschart-Wolfisberger R., Illi O. E., Merkle H. P., von Rechenberg B.,

“ Localized insulin-like growth factor I delivery to enhance new bone formation”, Bone,

vol. 33, n° 4, p. 660-672, Oct, 2003.

Mouzin O., Søballe K., Bechtold J. E., “ Loading improves anchorage of hydroxyapatite implants

more than titanium implants”, J Biomed Mater Res, vol. 58, n° 1, p. 61-68, 2001.

Prendergast P. J., Huiskes R., Søballe K., “ ESB Research Award 1996. Biophysical stimuli on

cells during tissue differentiation at implant interfaces”, J Biomech, vol. 30, n° 6, p. 539-548,

Jun, 1997.

Puleo D. A., et al L. A. H., “ Osteoblast responses to orthopedic implant materials in vitro”, J

Biomed.Mater.Res, vol. 25, p. 711-723, 1991.

Søballe K., Hansen E. S., al, “ Hydroxyapatite coating converts fibrous tissue to bone around

loaded implants”, J Bone Joint Surg, vol. 75, p. 270-278, 1993.

Søballe K., Jensen T. B., Mouzin O., Kidder L., Bechtold J. E., “ Differential effect of a bone

morphogenetic protein-7 (OP-1) on primary and revision loaded, stable implants with allograft”,

J Biomed Mater Res A, vol. 71, n° 4, p. 569-576, Dec, 2004.

Van-Der-Meulen M. C. H., Huiskes R., “ Why mechanobiology ”, Journal of Biomechanics,

vol. 35, p. 401-414, 2002.

Vestermark M. T., Bechtold J. E., Swider P., Søballe K., “ Mechanical interface conditions

affect morphology and cellular activity of sclerotic bone rims forming around experimental

loaded implants”, J Orthop Res, vol. 22, n° 3, p. 647-652, May, 2004.

Zaman M. H., Kamm R. D., Matsudaira P., Lauffenburger D. A., “ Computational Model for

Cell Migration in Three-Dimensional Matrices”, Biophysical Journal, vol. 89, p. 1389-

, 2005.

Downloads

Published

2009-08-12

How to Cite

Ambard, D., Guérin, G. ., & Swider, P. . (2009). A reactive poroelastic model to predict the periprosthetic tissue healing. European Journal of Computational Mechanics, 18(1), 131–143. https://doi.org/10.13052/EJCM.18.131-143

Issue

Section

Original Article