Numerical and Experimental Analysis of the Anisotropy Evolution in Aluminium Alloys Processed by Asymmetric Rolling
DOI:
https://doi.org/10.13052/ejcm2642-2085.3131Keywords:
anisotropy, texture, aluminium alloys, rolling, visco-plastic self-consistent modelAbstract
One of the most important characteristics of the sheet metal is its anisotropy. Asymmetric rolling (ASR) shows to be an adequate process to change the material anisotropy by increasing the normal anisotropy and decreasing the planar anisotropy. In this work, it is analysed the relationship between anisotropy and texture evolution using experimental and numerical approaches. Experimentally, the texture is modified by rolling, involving symmetric (SR), asymmetric rolling continuous (ARC) and asymmetric reverse (ARR) routes and different reductions per pass. The numerical analysis was performed through the visco-plastic self-consistent model where two hardening laws were considered, namely the Voce-type (V) and the dislocation density-based model (DDR). The main objective of the numerical method was to test the performance of the VPSC model for large plastic deformation. The Lankford coefficients decrease in RD and increase in TD with the increase in the total thickness reduction. This trend observed experimentally is well captured by the VPSC model, however, in terms of R-value, an overestimation is observed in both cases with better results for Voce-type law.
Downloads
References
R. Hill, ‘A theory of the yielding and plastic flow of anisotropic metals’, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 193, 281–297, 1948.
F. Barlat, ‘Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals’, Mat. Sci. Eng. 91, 55–72, 1987.
F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, ‘Linear transformation-based anisotropic yield functions’, Int. J. Plast. 21, 1009–1039, 2005.
D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, ‘Anisotropy and formability, in: Advances in Material Forming’, Springer, Paris, 143–173, 2007.
O. Cazacu, F. Barlat, ‘Generalization of Drucker’s yield Criterion to orthotropy’, Math. Mech. Sol. 6, 613–630, 2001.
O. Cazacu, F. Barlat, ‘Application of the theory of representation to describe yielding of anisotropic aluminum alloys’, Int. J. Eng. Sci. 41 (2003) 1367–1385.
O. Cazacu, F. Barlat, ‘A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals’, Int. J. Plast. 20, 2027–2045, 2004.
G. Sachs, ‘Plasticity problems in metals’, Trans. Faraday Soc. 24, 84–92, 1928.
G.I. Taylor, ‘Analysis of Plastic Strain in a Cubic Crystal’, pp. 218–224, Stephen Timoshenko 60th Anniversary Volume, 1938.
C.N. Tomé, R.A. Lebensohn, ‘Self-consistent homogenization methods for texture and anisotropy’, in: D. Raabe, L.Q. Chen, F. Barlat, F. Roters (Eds.), Continuum Scale Simulation of Engineering Materials, Fundamentals – Microstructures – Process Applications, Wiley, Berlin, 473–499, 2004.
P. Van Houtte, S. Li, O. Engler, ‘Taylor-type homogenization methods for texture and anisotropy’, in: D. Raabe, L.Q. Chen, F. Barlat, F. Roters (Eds.), Continuum Scale Simulation of Engineering Materials, Fundamentals – Microstructures – Process Applications, Wiley, Berlin, 459–471, 2004.
O. Cazacu, B. Revil-Baudard, N. Chandola, ‘A yield criterion for cubic single crystals’, Int J. Solids Struct. 10.1016/j.ijsolstr.2017.04.006, 2017.
G. Vincze, F.J.P. Simões, M.C. Butuc, ‘Asymmetrical Rolling of Aluminum Alloys and Steels: A Review’. Metals (Basel). 10, 1126, doi: 10.3390/met10091126, 2020.
J. Sidor, A. Miroux, R. Petrov and L. Kestensc, ‘Controlling the plastic anisotropy in asymmetrically rolled aluminium sheets’. Philisophical Magazin, 88, 30–32, 2008, 3779–3792, doi: 10.1080/14786430802064659.
M. Wronski, K. Wierzbanowski, S. Wronski, B. Bacroix, M. Wróbel and A. Uniwersał ‘Study of texture, microstructure and mechanical properties of asymmetrically rolled aluminium’. IOP Conference Series: Materials Science and Engineering, 82, Issue 1, 012074, 2015.
M. Wronski, K. Wierzbanowski, S. Wronski, B. Bacroix, P. Lipinski, ‘Experimental and finite element analysis of asymmetric rolling of 6061 aluminum alloy using two-scale elasto-plastic constitutive relation’. Arch. Metall. Mater. 2017, 62, 1991–1999, doi: 10.1515/amm-2017-0297, 2017.
J.-H. Lee, G.-H. Kim, S.K. Nam, I. Kim, D.N. Lee. ‘Calculation of plastic strain ratio of AA1050 Al alloy sheet processed by heavy asymmetric rolling–annealing followed by light rolling–annealing’. Comput. Mater. Sci. 100, 45–51. 10.1016/j.commatsci.2014.09.049, 2015.
S. Tamimi, J.P. Correia, A.B. Lopes, S. Ahzi, F. Barlat, J.J. Gracio, ‘Asymmetric rolling of thin AA-5182 sheets: Modelling and experiments’. Mater. Sci. Eng. A, 603, 150–159, doi: 10.1016/j.msea.2014.02.048, 2014.
S.S. Dhinwal, L.S. Toth, ‘Unlocking deformation path in asymmetric rolling by texture simulation’. Materials (Basel). 13, 1–7, doi: 10.3390/ma13010101, 2020.
D. Shore, P. Van Houtte, D. Roose, A. Van Bael, ‘Multiscale modelling of asymmetric rolling with an anisotropic constitutive law’. Comptes Rendus – Mec., 346, 724–742, doi: 10.1016/j.crme.2018.06.001, 2018.
F. Bachmann, R. Hielscher, H. Schaeben, ‘Texture analysis with MTEX- Free and open source software toolbox’. Solid State Phenom. 2010, 160, 63–68, 2010, doi: 10.4028/WWW.SCIENTIFIC.NET/SSP.160.63.
R.A. Lebensohn, C.N. Tomé, ‘A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals-Application to zirconium alloys’. Acta Metall. Mater. 41, 2611–2624, 1993.
R.A. Lebensohn, C.N. Tomé, P. Ponte Castañeda, ‘Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations’. Philos. Mag. 87, 4287–4322, 2007.
C. Tome, G. R. Canova, U. F. Kocks, N. Christodoulou, and J. J. Jonas, “The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals,” Acta Metall., vol. 32, no. 10, pp. 1637–1653, Oct. 1984, doi: 10.1016/0001-6160(84)90222-0, 1984.
C. N. Tomé and R. A. Lebensohn, “Manual for Code Visco-Plastic Self-Consistent (VPSC), version 7d,” Los Alamos National Laboratory, 2018.
E.F. Rauch, J.J. Gracio, F. Barlat, G. Vincze, ‘Modelling the plastic behavior of metals under complex loading conditions’. Modell. Sim. Mater. Sci. Eng. 19 (035009), 1–18, 2011.
K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, F. Barlat, F., ‘A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels’, Int. J. Plasticity, 46, 54–69, 2013.
W. Wen, M. Borodachenkova, C.N. Tome, G. Vincze, E.F. Rauch, F. Barlat, J.J. Gracio, ‘Mechanical behavior of low carbon steel subjected to strain path changes: Experiments and modeling’, Acta Mater., vol. 111, pp. 305–314, doi: 10.1016/J.ACTAMAT.2016.03.075, 2016.
A. Halloumi, C. Desrayaud, B. Bacroix, E. Rauch, and F. Montheillet, ‘A simple analytical model of asymmetric rolling’, Arch. Metall. Mater., vol. 57, no. 2, pp. 425–435, doi: 10.2478/v10172-012-0042-3, 2012.
O. Cazacu, N. Chandola1, B. Revil-Baudard, ‘Analytical expressions for the yield stress and Lankford coefficients of polycrystalline sheets based on a new single crystal model’, Int J Mater Form, 11:571–581, doi: 10.1007/s12289-017-1366-3, 2018.