Fracture of piezoelectric materials with the X-FEM

Authors

  • Eric Béchet Laboratoire de Physique et Mécanique des Matériaux Université de Metz UMR CNRS 7554, Ile du Saulcy F-57045 Metz cedex 1, France
  • Matthias Scherzer Institut für Mechanik und Fluiddynamik TU Bergakademie Freiberg Lampadiusstrasse 4 09596 Freiberg, Germany
  • Meinhard Kuna Institut für Mechanik und Fluiddynamik TU Bergakademie Freiberg Lampadiusstrasse 4 09596 Freiberg, Germany

DOI:

https://doi.org/10.13052/REMN.17.637-649

Keywords:

piezoelectric materials, crack, finite elements, X-FEM

Abstract

We present an application of X-FEM to the fracture analysis of piezoelectric materials. These materials are increasingly used in actuators and sensors. Under in service loading, phenomena of crack initiation and propagation may occur due to high electromechanical field concentrations. In the past few years, the extended finite element method (X-FEM) has been applied mostly to model cracks in structural materials. The present paper focuses on the definition of new enrichment functions suitable for cracks in piezolectric structures. The approach is based on specific asymptotic crack tip solutions, derived for piezoelectric materials.

Downloads

Download data is not yet available.

References

B´echet E., Minnebo H., Mo¨es N., Burgardt B., “ Convergence and conditioning issues

with X-FEM in fracture mechanics”, International Journal for Numerical Methods

in Engineering, vol. 64, p. 1033-1056, 2005.

B´echet E., Scherzer M., Kuna M., “ Application of the X-FEM to the fracture of piezoelectric

materials”, Submitted to International Journal for Numerical Methods in

Engineering, 2008.

Belytschko T., Black T., “ Elastic crack growth in finite elements with minimal

remeshing”, International Journal for Numerical Methods in Engineering, vol. 44,

p. 601-620, 1999.

Elguedj T., Gravouil A., Combescure A., “ Appropriate extended functions for XFEM

simulation of plastic fracture mechanics”, Computer Methods in Applied

Mechanics and Engineering, vol. 195, n°7-8, p. 501-515, 2005.

Mo¨es N., Dolbow J., Belytschko T., “ A finite element method for crack growth

without remeshing”, International Journal for Numerical Methods in Engineering,

vol. 46, p. 131-150, 1999.

Mußchelichwili N., Einige Grundaufgaben zur mathematischen Elastizitaetstheorie,

VEB Fachbuchverlag (Leipzig), 1971.

Osher S., Sethian J., “ Fronts propagating with curvature-dependent speed: algorithms

based on Hamilton-Jacobi formulations”, Journal of Computational

Physics, vol. 79, p. 12-49, 1988.

Scherzer M., Kuna M., “ Combined analytical and numerical solution of 2D interface

corner configurations between dissimilar piezoelectric materials”, International

Journal of Fracture, vol. 127, n°1, p. 61-99, 2004.

Sih G., Liebowitz H., Fracture,an advanced treatise, vol. 2, Academic Press, London,

UK, 1968.

Sosa H., “ Plane problems in piezoelectric media with defects”, International Journal

of Solids and Structures, vol. 28, n°4, p. 491-505, 1991.

Suo Z., Kuo C., Barnett D.,Willis J., “ Fracture mechanics for piezoelectric ceramics”,

Journal of the Mechanics and Physics of Solids, vol. 40, n°4, p. 739-765, 1992.

Downloads

Published

2008-06-11

How to Cite

Béchet, E. ., Scherzer, M. ., & Kuna, M. . (2008). Fracture of piezoelectric materials with the X-FEM. European Journal of Computational Mechanics, 17(5-7), 637–649. https://doi.org/10.13052/REMN.17.637-649

Issue

Section

Original Article