Anisotropic 3D delay-damage model to simulate concrete structures
DOI:
https://doi.org/10.13052/REMN.17.749-760Keywords:
damage, delay-damage, induced anisotropy, concrete, impactAbstract
Dynamic loadings lead to material degradation and structural failure. This is even more the case for concrete structures where the parts initially in compression break in tension due to waves propagation and reflection. The dissymmetry (mainly due to damage induced anisotropy) of the material behavior plays a major role in such cases. Loading induced damage is often anisotropic and one proposes here to take advantage of such a feature to build a damage model for concrete, dissymmetric in tension and in compression, 3D, suitable for dynamic computations. A single 2nd order tensorial damage variable D is considered with a damage law ensuring a damage rate proportional to the square of the positive part of the strain tensor. One focus in the present work on viscous regularizations for the anisotropic damage model proposed. Numerical examples illustrate the efficiency of the model to deal with 3D structures.
Downloads
References
Allix O., Deu J., « Delay-damage modelling for fracture prediction of laminated composites
under dynamic loading », Engineering Transactions, vol. 45, p. 29-46, 1997.
de Borst R., Sluys L., « Localisation in a Cosserat continuum under static and dynamic loading
conditions », Computer Methods in Applied Mechanics and Engineering, vol. 90, p. 805-
, 1991.
Desmorat R., Gatuingt F., Ragueneau F., « Explicit evolution law for anisotropic damage :
application to concrete structures », NATO Advanced Research Workshop Multi-physics and
Multi-scale Computer Models in Non-linear Analysis and Optimal Design of Engineering
Structures under Extreme Conditions, Bled, Slovenia, 2004.
Desmorat R., Gatuingt F., Ragueneau F., « Nonlocal anisotropic damage model and related
computational aspects for quasi-brittle materials », Engineering Fracture Mechanics, vol.
, p. 1539-1560, 2007.
Dragon A., Halm D., « An anisotropic model of damage and frictional sliding for brittle materials
», European Journal of Mechanics, A/Solids, vol. 17, p. 439-460, 1998.
Dubé J., Modélisation simplifiée et comportement visco-endommageable des structures en béton,
PhD thesis, École Normale Supérieure de Cachan, 1994.
Gatuingt F., Pijaudier-Cabot G., « Coupled damage and plasticity modelling in transient dynamic
analysis of concrete », Int. J. Numer. Anal. Meth. Geomec., vol. 26, p. 1-24, 2002.
Klepaczko J. R., Brara A., « An experimental method for dynamic tensile testing of concrete
by spalling », International Journal of Impact Engineering, vol. 25, p. 387-409, 2001.
Krajcinovic D., « Continuous damage mechanics revisited : basic concepts and definitions », J.
Appl. Mech., vol. 52, n° 6, p. 829-834, 1985.
Ladevèze P., « About a damage mechanics approach », Mechanics and Mecanisms of Damage
in Composite and Multimaterials, Baptiste D, ASME, p. 119-142, 1989.
Ladeveze P., Allix O., Gornet L., Leveque D., Perret L., Computational damage mechanics
approach for laminates : identification and comparison with experimental results, Voyiadjis
G, Elsevier, chapter Damage Mechanics in Engineering Materials. Section A, 1998.
Leckie F. A., Onat E. T., Tensorial nature of damage measuring internal variables, J. Hult and
J. Lemaitre eds, Springer Berlin, chapter Physical Non-Linearities in Structural Analysis,
p. 140-155, 1981.
Lemaitre J., Desmorat R., Engineering Damage Mechanics : Ductile, Creep, Fatigue and Brittle
Failures, Springer, 2005.
Mazars J., « A description of micro and macroscale damage of concrete structures », Journal
of Eng. Fract. Mechanics, vol. 25, p. 729-737, 1986.
Mazars J., Berthaud Y., Ramtani S., « The unilateral behaviour of damaged concrete », Engineering
Fracture Mechanics, vol. 35, n° 4, p. 629-635, 1990.
Peerlings R.H.J.and de Borst R., Brekelmans W., De Vree J., « Gradient Enhanced Damage for
Quasi-Brittle Materials », International Journal of Numerical Methods in Engineering, vol.
, p. 3391-3403, 1996.
Pijaudier-Cabot G., Bažant Z., « Nonlocal damage theory », J. Engng Mech. ASCE, vol. 113,
p. 1512-1533, 1987.
Schuler H., Mayrhofer C., Thoma K., « Spall experiments for the measurement of the tensile
strength and fracture energy of concrete at high strain rates », International Journal of
Impact Engineering, vol. 32, p. 1635-1650, 2006.
Suffis A., Développement d’un modele d’endommagement a taux de croissance controlé pour
la simulation robuste de structures sous impact, PhD thesis, INSA Lyon, 2004.