Anisotropic 3D delay-damage model to simulate concrete structures

Authors

  • Fabrice Gatuingt LMT-Cachan (ENS Cachan/CNRS/Université Paris 6/Univ. Sud-Paris) 61 av. du Président Wilson, F-94230 Cachan
  • Rodrigue Desmorat LMT-Cachan (ENS Cachan/CNRS/Université Paris 6/Univ. Sud-Paris) 61 av. du Président Wilson, F-94230 Cachan
  • Marion Chambart LMT-Cachan (ENS Cachan/CNRS/Université Paris 6/Univ. Sud-Paris) 61 av. du Président Wilson, F-94230 Cachan and DEN/DM2S/SEMT, CEA Saclay F-91191 Gif-sur-Yvette cedex
  • Didier Combescure DEN/DM2S/SEMT, CEA Saclay F-91191 Gif-sur-Yvette cedex
  • Daniel Guilbaud DEN/DM2S/SEMT, CEA Saclay F-91191 Gif-sur-Yvette cedex

DOI:

https://doi.org/10.13052/REMN.17.749-760

Keywords:

damage, delay-damage, induced anisotropy, concrete, impact

Abstract

Dynamic loadings lead to material degradation and structural failure. This is even more the case for concrete structures where the parts initially in compression break in tension due to waves propagation and reflection. The dissymmetry (mainly due to damage induced anisotropy) of the material behavior plays a major role in such cases. Loading induced damage is often anisotropic and one proposes here to take advantage of such a feature to build a damage model for concrete, dissymmetric in tension and in compression, 3D, suitable for dynamic computations. A single 2nd order tensorial damage variable D is considered with a damage law ensuring a damage rate proportional to the square of the positive part of the strain tensor. One focus in the present work on viscous regularizations for the anisotropic damage model proposed. Numerical examples illustrate the efficiency of the model to deal with 3D structures.

Downloads

Download data is not yet available.

References

Allix O., Deu J., « Delay-damage modelling for fracture prediction of laminated composites

under dynamic loading », Engineering Transactions, vol. 45, p. 29-46, 1997.

de Borst R., Sluys L., « Localisation in a Cosserat continuum under static and dynamic loading

conditions », Computer Methods in Applied Mechanics and Engineering, vol. 90, p. 805-

, 1991.

Desmorat R., Gatuingt F., Ragueneau F., « Explicit evolution law for anisotropic damage :

application to concrete structures », NATO Advanced Research Workshop Multi-physics and

Multi-scale Computer Models in Non-linear Analysis and Optimal Design of Engineering

Structures under Extreme Conditions, Bled, Slovenia, 2004.

Desmorat R., Gatuingt F., Ragueneau F., « Nonlocal anisotropic damage model and related

computational aspects for quasi-brittle materials », Engineering Fracture Mechanics, vol.

, p. 1539-1560, 2007.

Dragon A., Halm D., « An anisotropic model of damage and frictional sliding for brittle materials

», European Journal of Mechanics, A/Solids, vol. 17, p. 439-460, 1998.

Dubé J., Modélisation simplifiée et comportement visco-endommageable des structures en béton,

PhD thesis, École Normale Supérieure de Cachan, 1994.

Gatuingt F., Pijaudier-Cabot G., « Coupled damage and plasticity modelling in transient dynamic

analysis of concrete », Int. J. Numer. Anal. Meth. Geomec., vol. 26, p. 1-24, 2002.

Klepaczko J. R., Brara A., « An experimental method for dynamic tensile testing of concrete

by spalling », International Journal of Impact Engineering, vol. 25, p. 387-409, 2001.

Krajcinovic D., « Continuous damage mechanics revisited : basic concepts and definitions », J.

Appl. Mech., vol. 52, n° 6, p. 829-834, 1985.

Ladevèze P., « About a damage mechanics approach », Mechanics and Mecanisms of Damage

in Composite and Multimaterials, Baptiste D, ASME, p. 119-142, 1989.

Ladeveze P., Allix O., Gornet L., Leveque D., Perret L., Computational damage mechanics

approach for laminates : identification and comparison with experimental results, Voyiadjis

G, Elsevier, chapter Damage Mechanics in Engineering Materials. Section A, 1998.

Leckie F. A., Onat E. T., Tensorial nature of damage measuring internal variables, J. Hult and

J. Lemaitre eds, Springer Berlin, chapter Physical Non-Linearities in Structural Analysis,

p. 140-155, 1981.

Lemaitre J., Desmorat R., Engineering Damage Mechanics : Ductile, Creep, Fatigue and Brittle

Failures, Springer, 2005.

Mazars J., « A description of micro and macroscale damage of concrete structures », Journal

of Eng. Fract. Mechanics, vol. 25, p. 729-737, 1986.

Mazars J., Berthaud Y., Ramtani S., « The unilateral behaviour of damaged concrete », Engineering

Fracture Mechanics, vol. 35, n° 4, p. 629-635, 1990.

Peerlings R.H.J.and de Borst R., Brekelmans W., De Vree J., « Gradient Enhanced Damage for

Quasi-Brittle Materials », International Journal of Numerical Methods in Engineering, vol.

, p. 3391-3403, 1996.

Pijaudier-Cabot G., Bažant Z., « Nonlocal damage theory », J. Engng Mech. ASCE, vol. 113,

p. 1512-1533, 1987.

Schuler H., Mayrhofer C., Thoma K., « Spall experiments for the measurement of the tensile

strength and fracture energy of concrete at high strain rates », International Journal of

Impact Engineering, vol. 32, p. 1635-1650, 2006.

Suffis A., Développement d’un modele d’endommagement a taux de croissance controlé pour

la simulation robuste de structures sous impact, PhD thesis, INSA Lyon, 2004.

Downloads

Published

2008-08-13

How to Cite

Gatuingt, F., Desmorat, R. ., Chambart, M. ., Combescure, D. ., & Guilbaud, D. . (2008). Anisotropic 3D delay-damage model to simulate concrete structures. European Journal of Computational Mechanics, 17(5-7), 749–760. https://doi.org/10.13052/REMN.17.749-760

Issue

Section

Original Article