An axi-symmetric thermo-hydraulic model to better understand spot laser welding

Authors

  • Marc Medale Polytech’ Marseille, Lab. IUSTI, UMR 6595 CNRS Université de Provence Technopole de Château-Gombert 5 rue Enrico Fermi, F-13453 Marseille cedex 13
  • Charline Touvrey CEA, Centre de Valduc, DAM/DFTN F-21120 Is sur Tille
  • Rémy Fabbro GERAILP-LALP, UPR CNRS 1578 16 bis avenue Prieur de la Côte d’Or F-94114 Arcueil cedex

DOI:

https://doi.org/10.13052/REMN.17.795-806

Keywords:

computational fluid dynamics, coupled heat and fluid flow, spot laser welding, free and moving interface

Abstract

The aim of this study is to better understand the basic mechanisms leading to possible defect occurrence in spot laser welding. For that purpose we have developed a numerical model, which takes into account the key-hole dynamics together with a dedicated energy deposition model featuring the multiple reflection effects. Many experiments have also been achieved enabling us to report several defect classes. The analysis of some of these scenarios have been performed and favourably compared to experiments.

Downloads

Download data is not yet available.

References

Amara E., Bendib A., “ Modelling of vapour flow in deep penetration laser welding”, J. Phys.

D: Appl. Phys., vol. 35, p. 272-280, 2002.

Bennon W., Incropera F., “ A continuum model for momentum, heat and species transport in

binary solid-liquid phase change systems - 1. Model formulation, 2. Application to solidification

in a rectangular cavity”, Int. J. Heat Mass Transf., 1987.

Duley W., Laser Welding, Wiley Interscience, 1999.

Fabbro R., Chouf K., “ Keyhole modelling during laser welding”, J. Phys. D: Appl. Phys., vol.

, p. 4075-4083, 2000.

Ganesh R., Faghri A., Hahn Y., “ A generalized thermal modelling for laser drilling process –

I. Mathematical modelling and numerical methodology”, J. Heat Mass Transfer, vol. 40,

p. 3351-3360, 1997a.

Ganesh R., Faghri A., Hahn Y., “ A generalized thermal modelling for laser drilling process -

II. Numerical simulation and results”, J. Heat Mass Transfer, vol. 40, p. 3361-3373, 1997b.

Girard K., Jouvard J., Boquillon J., Bouilly P., Naudy P.in S. Bellingham (ed.), SPIE Conference,

vol. 3888, p. 418-428, 2000.

Jouvard J., Girard K., Perret O., “ Keyhole formation and power deposition in ND:YAG laser

spot welding”, J. Phys. D: Appl. Phys., vol. 34, p. 364-372, 2001.

Kaplan A., Mizutani M., Katayama S., Matsunawa A., “ Unbounded keyhole collapse and

bubble formation during pulsed laser interaction with liquid zinc”, J. Phys. D: Appl. Phys.,

vol. 35, p. 1218-1228, 2002.

Ki H., Mohanty P., Mazumder H., “ Modelling of high density laser material interaction using

fast level set method”, J. Phys. D: Appl. Phys., vol. 34, p. 364-372, 2001.

Medale M., Rabier S., Xhaard C., “ A thermo-hydraulic numerical model for high energy welding

processes”, Rev. Eur. Elements Finis, vol. 13, p. 207-229, 2004.

Ni J., Incropera F., “ Extension of the continuum model for transport phenomena occuring

during metal alloy solidification - 1. The conservation equations, 2. Microscopic considerations”,

Int. J. Heat Mass Transf., vol. 38, p. 1271-1296, 1995.

Rabier S., Medale M., “ Computation of free surface flows with a projection FEM in a moving

mesh framework”, Comput. Methods Appl. Mech. Engrg., vol. 192, p. 4703-4721, 2003.

SemakW., BraggW., Damkroger B., Kempkas S., “ Temporal evolution of the temperature field

in the beam interaction zone during laser-material processing”, J. Phys. D: Appl. Phys., vol.

, p. 1819-1825, 1999.

Semak W., Matsunawa A., “ The role of recoil pressure in energy balance during laser – materials

processing”, J. Phys. D: Appl. Phys., vol. 30, p. 2541-2552, 1997.

Solana P., Kapadia P., Dowden J., Marsden P., “ An analytical model for laser drilling of metals

with absorption within the vapour”, J. Phys. D: Appl. Phys., vol. 32, p. 942-952, 1999.

Voller V., Prakash C., “ A fixed grid numerical modelling methodology for convection diffusion

mushy region phase change problems”, Int. J. Heat Mass Transf., vol. 24, p. 1709-1718,

Downloads

Published

2008-07-16

How to Cite

Medale, M. ., Touvrey, C., & Fabbro, R. . (2008). An axi-symmetric thermo-hydraulic model to better understand spot laser welding. European Journal of Computational Mechanics, 17(5-7), 795–806. https://doi.org/10.13052/REMN.17.795-806

Issue

Section

Original Article