An axi-symmetric thermo-hydraulic model to better understand spot laser welding
DOI:
https://doi.org/10.13052/REMN.17.795-806Keywords:
computational fluid dynamics, coupled heat and fluid flow, spot laser welding, free and moving interfaceAbstract
The aim of this study is to better understand the basic mechanisms leading to possible defect occurrence in spot laser welding. For that purpose we have developed a numerical model, which takes into account the key-hole dynamics together with a dedicated energy deposition model featuring the multiple reflection effects. Many experiments have also been achieved enabling us to report several defect classes. The analysis of some of these scenarios have been performed and favourably compared to experiments.
Downloads
References
Amara E., Bendib A., “ Modelling of vapour flow in deep penetration laser welding”, J. Phys.
D: Appl. Phys., vol. 35, p. 272-280, 2002.
Bennon W., Incropera F., “ A continuum model for momentum, heat and species transport in
binary solid-liquid phase change systems - 1. Model formulation, 2. Application to solidification
in a rectangular cavity”, Int. J. Heat Mass Transf., 1987.
Duley W., Laser Welding, Wiley Interscience, 1999.
Fabbro R., Chouf K., “ Keyhole modelling during laser welding”, J. Phys. D: Appl. Phys., vol.
, p. 4075-4083, 2000.
Ganesh R., Faghri A., Hahn Y., “ A generalized thermal modelling for laser drilling process –
I. Mathematical modelling and numerical methodology”, J. Heat Mass Transfer, vol. 40,
p. 3351-3360, 1997a.
Ganesh R., Faghri A., Hahn Y., “ A generalized thermal modelling for laser drilling process -
II. Numerical simulation and results”, J. Heat Mass Transfer, vol. 40, p. 3361-3373, 1997b.
Girard K., Jouvard J., Boquillon J., Bouilly P., Naudy P.in S. Bellingham (ed.), SPIE Conference,
vol. 3888, p. 418-428, 2000.
Jouvard J., Girard K., Perret O., “ Keyhole formation and power deposition in ND:YAG laser
spot welding”, J. Phys. D: Appl. Phys., vol. 34, p. 364-372, 2001.
Kaplan A., Mizutani M., Katayama S., Matsunawa A., “ Unbounded keyhole collapse and
bubble formation during pulsed laser interaction with liquid zinc”, J. Phys. D: Appl. Phys.,
vol. 35, p. 1218-1228, 2002.
Ki H., Mohanty P., Mazumder H., “ Modelling of high density laser material interaction using
fast level set method”, J. Phys. D: Appl. Phys., vol. 34, p. 364-372, 2001.
Medale M., Rabier S., Xhaard C., “ A thermo-hydraulic numerical model for high energy welding
processes”, Rev. Eur. Elements Finis, vol. 13, p. 207-229, 2004.
Ni J., Incropera F., “ Extension of the continuum model for transport phenomena occuring
during metal alloy solidification - 1. The conservation equations, 2. Microscopic considerations”,
Int. J. Heat Mass Transf., vol. 38, p. 1271-1296, 1995.
Rabier S., Medale M., “ Computation of free surface flows with a projection FEM in a moving
mesh framework”, Comput. Methods Appl. Mech. Engrg., vol. 192, p. 4703-4721, 2003.
SemakW., BraggW., Damkroger B., Kempkas S., “ Temporal evolution of the temperature field
in the beam interaction zone during laser-material processing”, J. Phys. D: Appl. Phys., vol.
, p. 1819-1825, 1999.
Semak W., Matsunawa A., “ The role of recoil pressure in energy balance during laser – materials
processing”, J. Phys. D: Appl. Phys., vol. 30, p. 2541-2552, 1997.
Solana P., Kapadia P., Dowden J., Marsden P., “ An analytical model for laser drilling of metals
with absorption within the vapour”, J. Phys. D: Appl. Phys., vol. 32, p. 942-952, 1999.
Voller V., Prakash C., “ A fixed grid numerical modelling methodology for convection diffusion
mushy region phase change problems”, Int. J. Heat Mass Transf., vol. 24, p. 1709-1718,