Structural analysis by interval approach

Authors

  • Franck Massa Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, UMR 8530, Université de Valenciennes Le Mont Houy, F-59313 Valenciennes cedex 9
  • Karine Mourier-Ruffin Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, UMR 8530, Université de Valenciennes Le Mont Houy, F-59313 Valenciennes cedex 9
  • Bertrand Lallemand Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, UMR 8530, Université de Valenciennes Le Mont Houy, F-59313 Valenciennes cedex 9
  • Thierry Tison Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, UMR 8530, Université de Valenciennes Le Mont Houy, F-59313 Valenciennes cedex 9

DOI:

https://doi.org/10.13052/REMN.17.869-880

Keywords:

imperfections, interval, reanalysis, frequency response functions, aggregation of experimental results

Abstract

Finite element simulations are well established in industry and are an essential part of the design phase for mechanical structures. Although numerical models have become more and more complex and realistic, the results can still be relatively far from observed reality. Nowadays, use of deterministic analysis is limited due to the existence of several kinds of imperfections in the different steps of the structural design process. This paper presents a general non-probabilistic methodology that uses interval sets to propagate the imperfections. This methodology incorporates sensitivity analysis and reanalysis techniques. Numerical interval results for a test case were compared to experimental interval results to demonstrate the capabilities of the proposed methodology.

Downloads

Download data is not yet available.

References

Alefeld G., Herzberber J., Introductions to Interval Computations, Academic Press, New

York, 1983.

Balmès E., Barthe D., Ravary F., « Propagation de méconnaissances en analyse modale », 6e

colloque national en calcul des structures, Giens, France, 2003, p. 407-414.

Balmès E., Ravary F., Langlais D., “Uncertainty propagation in modal analysis”, Proceedings

of 24th International Modal Analysis Conference, 2005, Orlando.

Capiez-Lernout E., Pellissetti M., Pradlwarter H., Schueller G.I., Soize C., “Data and model

uncertainties in complex aerospace engineering systems”, Journal of Sound and

Vibration, vol. 295, 2006, p. 923-938.

Cochelin B., Damil N., Potier-Ferry M., “Asymptotic numerical methods and Padé

approximants for non linear elastic structures”, Revue Européenne des Eléments finis,

vol. 3, n° 2, 1994, p. 281-297.

De Gersem H., Moens D., Desmet W., Vandepitte D., “Interval and fuzzy dynamic analysis of

finite element models with superelements”, Computers and Structures, vol. 85, 2007,

p. 304-319.

Lee I.-W., Jung G.-H., “An efficient algebraic method for the computation of natural

frequency and mode shape sensitivities - Part I. Distinct natural frequencies”, Computers

and Structures, vol. 62, n° 3, 1997, p. 429-435.

Massa F., Lallemand B., Tison T., « Comportement statique et modal des structures en

présence de variabilités paramétriques », 6e colloque national en calcul des structures,

Giens, France, 2003, p. 415-422.

Massa F., Gestion des imperfections en phase de conception des structures mécaniques, Thèse

de doctorat, Université de Valenciennes, 2005.

Massa F., Tison T., Lallemand B., “A fuzzy procedure for the static design of imprecise

structures”, Computer Methods in Applied Mechanics and Engineering, vol. 195, 2006,

p. 925-941.

Massa F., Ruffin K., Tison T., Lallemand B., “A complete method for efficient fuzzy modal

analysis”, Journal of Sound and Vibration, vol. 309, n° 1-2, 2008, p. 63-85.

McWilliam S., “Anti-optimisation of uncertain structures using interval analysis”, Computers

and Structures, vol. 79, 2001, p. 421-430.

Moore R.E., Interval Analysis, Prentice Hall, Englewood Cliffs, New York, 1966.

Mourier-Ruffin K., Massa F., Tison T., Lallemand B., « Réponse harmonique de structures

comportant des paramètres imprécis », 8e colloque national en calcul des structures,

Giens, France, 2007.

Sudret B., Der Kiureghian A., Stochastic finite element methods and reliability: a state-of-theart

report», Technical Report UCB/SEMM-2000/08, University of California, 2000.

Downloads

Published

2008-06-20

How to Cite

Massa, F. ., Mourier-Ruffin, K. ., Lallemand, B. ., & Tison, T. . (2008). Structural analysis by interval approach. European Journal of Computational Mechanics, 17(5-7), 869–880. https://doi.org/10.13052/REMN.17.869-880

Issue

Section

Original Article