Structural analysis by interval approach
DOI:
https://doi.org/10.13052/REMN.17.869-880Keywords:
imperfections, interval, reanalysis, frequency response functions, aggregation of experimental resultsAbstract
Finite element simulations are well established in industry and are an essential part of the design phase for mechanical structures. Although numerical models have become more and more complex and realistic, the results can still be relatively far from observed reality. Nowadays, use of deterministic analysis is limited due to the existence of several kinds of imperfections in the different steps of the structural design process. This paper presents a general non-probabilistic methodology that uses interval sets to propagate the imperfections. This methodology incorporates sensitivity analysis and reanalysis techniques. Numerical interval results for a test case were compared to experimental interval results to demonstrate the capabilities of the proposed methodology.
Downloads
References
Alefeld G., Herzberber J., Introductions to Interval Computations, Academic Press, New
York, 1983.
Balmès E., Barthe D., Ravary F., « Propagation de méconnaissances en analyse modale », 6e
colloque national en calcul des structures, Giens, France, 2003, p. 407-414.
Balmès E., Ravary F., Langlais D., “Uncertainty propagation in modal analysis”, Proceedings
of 24th International Modal Analysis Conference, 2005, Orlando.
Capiez-Lernout E., Pellissetti M., Pradlwarter H., Schueller G.I., Soize C., “Data and model
uncertainties in complex aerospace engineering systems”, Journal of Sound and
Vibration, vol. 295, 2006, p. 923-938.
Cochelin B., Damil N., Potier-Ferry M., “Asymptotic numerical methods and Padé
approximants for non linear elastic structures”, Revue Européenne des Eléments finis,
vol. 3, n° 2, 1994, p. 281-297.
De Gersem H., Moens D., Desmet W., Vandepitte D., “Interval and fuzzy dynamic analysis of
finite element models with superelements”, Computers and Structures, vol. 85, 2007,
p. 304-319.
Lee I.-W., Jung G.-H., “An efficient algebraic method for the computation of natural
frequency and mode shape sensitivities - Part I. Distinct natural frequencies”, Computers
and Structures, vol. 62, n° 3, 1997, p. 429-435.
Massa F., Lallemand B., Tison T., « Comportement statique et modal des structures en
présence de variabilités paramétriques », 6e colloque national en calcul des structures,
Giens, France, 2003, p. 415-422.
Massa F., Gestion des imperfections en phase de conception des structures mécaniques, Thèse
de doctorat, Université de Valenciennes, 2005.
Massa F., Tison T., Lallemand B., “A fuzzy procedure for the static design of imprecise
structures”, Computer Methods in Applied Mechanics and Engineering, vol. 195, 2006,
p. 925-941.
Massa F., Ruffin K., Tison T., Lallemand B., “A complete method for efficient fuzzy modal
analysis”, Journal of Sound and Vibration, vol. 309, n° 1-2, 2008, p. 63-85.
McWilliam S., “Anti-optimisation of uncertain structures using interval analysis”, Computers
and Structures, vol. 79, 2001, p. 421-430.
Moore R.E., Interval Analysis, Prentice Hall, Englewood Cliffs, New York, 1966.
Mourier-Ruffin K., Massa F., Tison T., Lallemand B., « Réponse harmonique de structures
comportant des paramètres imprécis », 8e colloque national en calcul des structures,
Giens, France, 2007.
Sudret B., Der Kiureghian A., Stochastic finite element methods and reliability: a state-of-theart
report», Technical Report UCB/SEMM-2000/08, University of California, 2000.