Vers une optimisation de la tenue à la fatigue de pièces forgées intégrant l’histoire mécanique des matériaux

Authors

  • Pierre-Olivier Bouchard Centre de Mise en Forme des Matériaux (CEMEF) Ecole Nationale Supérieure des Mines de Paris BP 207, F-06904 Sophia-Antipolis cedex
  • Nicolas Caillet Centre de Mise en Forme des Matériaux (CEMEF) Ecole Nationale Supérieure des Mines de Paris BP 207, F-06904 Sophia-Antipolis cedex
  • Yvan Chastel Centre de Mise en Forme des Matériaux (CEMEF) Ecole Nationale Supérieure des Mines de Paris BP 207, F-06904 Sophia-Antipolis cedex

DOI:

https://doi.org/10.13052/REMN.17.283-301

Keywords:

multiaxial fatigue, high cycle fatigue, forging, anisotropy, residual stresses

Abstract

Forging of metal components induces grain flow orientation, which gives rise to anisotropic mechanical properties. Our study deals with the definition and the use of this grain flow anisotropy into fatigue life calculation. We have focused on high cycle fatigue, and we deal with steels containing malleable inclusions above a critical size. A new multiaxial criterion has been developed on the basis of the Murakami equation. This criterion has been implemented in the finite element code Forge 3®. This computational tool uses a new variable to represent the grain flow orientation provided by forging simulation to account for subsequent fatigue anisotropic behaviour. Moreover, residual stresses resulting from forging are also taken into account to perform the fatigue calculation. Finally, a virtual simulation chain, including Forging and Fatigue calculation is carried out. The final goal is to improve fatigue properties by modifying forging conditions.

Downloads

Download data is not yet available.

References

Ballard P., Dang Van K., Deperrois A., Papadopoulos Y.V., “High cycle fatigue and a finite

element analysis”, Fatigue Fract. Engng. Mater. Struct., vol. 18, n° 3, 1995, p. 397-411.

Beretta S., Murakami Y., “SIF and threshold for small cracks at small notches under torsion”,

Fatigue Fract. Engng. Mater. Struct., 23, 2000, p. 97-104.

Bouchard P.O., Fayolle S., Mocellin K., “3D Numerical Modeling of Mechanical Joining

Processes – From Joining down to Structural Analysis”, The Eighth International

Conference on Computational Structures Technology, Las Palmas de Gran Canaria,

Spain, 12-15 September 2006.

Caillet N., Bouchard P.-O., Chastel Y., “Multiaxial Approach of Murakami Equation and

Applications to Forged Parts”, 4th International Conference on Fracture and Damage

Mechanics, Mallorca, Spain, July 12-14, 2005.

Coupez T., Digonnet H., Ducloux R., “Parallel meshing and remeshing”, Applied

Mathematical Modelling, vol. 25, 2000, p. 153-175.

Dang Van K., Griveau B., Message O., “On a new multiaxial fatigue limit criterion: Theory

and application”, Biaxial and Multiaxial Fatigue, EGF 3, Mechanical Engineering

Publications, London, 1989, p. 479-496.

Ekberg A., Sotkovszki P., “Anisotropy and rolling contact fatigue of raiway wheels”,

International Journal of Fatigue, 23, 2001, p. 29-43.

Fourment L., Do T.T., Habbal A., Bouzaiane M., “Gradient, non-gradient and hybrid

algorithms for optimizing 2D and 3D forging sequences”, 8th International ESAFORM

Conference on Material Forming, Cluj-Napoca, Romania, 2005.

Hopp H., Reeve P., “An algorithm for computing the minimum covering sphere in any

dimension”, http://www.mel.nist.gov/msidlibrary/doc/hopp95.pdf, 1996.

Kitagawa H., Takahashi S., “Applicability of fracture mechanics to very small cracks or the

cracks in the early stage”, Proceedings 2nd Int. Conference Mech. Behaviour Mater.

ICM2, Boston, 1976, p. 627-631.

Murakami Y., Endo M., “Effects of defects, inclusions and inhomogeneities on fatigue

strength”, Fatigue, vol. 16, 1994, p. 163-182.

Murakami Y., Endo M., “Quantitative evaluation of fatigue strength of metals containing

various small defects or cracks”, Engineering Fracture Mechanics, vol. 17, n° 1, 1983,

p. 1-15.

Downloads

Published

2008-08-14

How to Cite

Bouchard, P.-O., Caillet, N., & Chastel, Y. . (2008). Vers une optimisation de la tenue à la fatigue de pièces forgées intégrant l’histoire mécanique des matériaux. European Journal of Computational Mechanics, 17(3), 283–301. https://doi.org/10.13052/REMN.17.283-301

Issue

Section

Original Article