Optimisation de la chaîne complète du procédé de moulage par injection métallique
Application à une prothèse de hanche
DOI:
https://doi.org/10.13052/REMN.17.397-422Keywords:
powder injection moulding, optimization, response surfaces, genetic algorithm, and parametric identificationAbstract
This paper is related to the parametric identification and optimization of the injection moulding and sintering stage of the Metal Injection Moulding process. The injection stage is described using a biphasic flow formulation, whereas the sintering mechanism by solid state diffusion is accounted through a viscoplastic type material model. The accuracy of the numerical results of the injection moulding or sintering stages is strongly dependent on the identification of physical parameters entering in the models. In this paper one propose to combine the optimization of the injection moulding stage with the parametric identification of the sintering stage in order to determine the size of the mould cavities in order to get components without defects and with the appropriate resulting geometrical sizes and mechanical properties.
Downloads
References
Ayad G., Lejeune A., Barriere T., Gelin J.C., “Finite element modeling and optimization of
powder segregation during metal injection molding”, J. of Steel Grips, 2, 2004, p. 393-398.
Ayad G., Contribution à l’optimisation multi-physiques et multi-étapes du moulage par
Injection de Poudres, Thèse de l’Université de Franche-Comté, 2006, p. 1-156.
Barriere T., Gelin J.C., Liu B., “Analysis of phase segregation effects arising in fluid-particle
flows during metal injection molding”, Int. J. of Forming Process, Hermes Science,
vol. 4, n° 3-4, 2001, p. 199-216.
Barriere T., Gelin J-C., Dvorak P., Renault D., « Expérimentation, modélisation et simulation
numérique par éléments finis en injection et densification de poudres céramiques »,
e Colloque National en Calcul des Structures, Giens, 2003, p. 141-148.
Barriere T., Physique et technologie du Moulage par Injection de Poudres, Mémoire
d’Habilitation à Diriger des Recherches, Université de Franche-Comté, 2005, p. 1-131.
Belytschko T., Krongauz K., Organ D., Fleming M., Krysl P., “Meshless methods: an
overview and recent developments”, Comput. Methods Appl. Mech Engrg, vol. 139,
, p. 3-47.
Bordia R.K., Scherer G.W., “On constrained sintering-I Constitutive model for a sintering
body”, Acta Metall., vol. 36, n° 9, 1988, p. 2393-2397.
Donea J., Giuliani S., Laval H., Quartapelle L., “Finite element solution of the unsteady
Navier-Stokes equations by a fractional step method”, Comp. Meth. in Appl. Mech. and
Engrg., vol. 30, 1982, p. 53-73.
Dvorak P., Barriere T., Gelin J.C., “Jetting in Metal Injection Molding of 316 L Stainless
Steel”, Powder Metallurgy, Maney Publishing, vol. 48, 2005, n° 3, p. 254-260.
Gelin J.C., Barriere T., Liu B., “Mould design methods by experiment and numerical
simulation in metal injection molding”, J. of Engineering Manufacture, John Wiley &
Sons, Part B, vol. 126, 2002, p. 1533-1547.
Gelin J.C., Barriere T., « Ségrégation de phases dans les écoulements de polymères fondus
chargés en poudres métalliques », Mécanique et Industries, vol. 5, 2004, p. 429-440.
German R.M., Sintering Theory and Practice, Wiley-Interscience, 1996.
German R.M., Bose A., Injection Moulding of Metals and ceramics, Princeton, New Jersey,
USA, 1997.
Jozefowiez N., Frédéric Semet F., Talbia E-G., “The bi-objective covering tour problem”,
J. of computers and operations research, 2005.
Liksonov D., Experimental and numerical study of the manufacturing and behaviour of
femoral THR components produced by injection molding of fiber composite and by
powder technologies, Thèse de l’Université de Franche-Comté, 2006, p. 1-140.
McMeeking R.M., Kuhn T., “A diffusional creep law for powder compacts”, Acta
Metallurgica Materiala, vol. 40, 1992, p. 961-969.
Nayroles B., Touzot G., Villon P., La Méthode des Eléments Diffus, Compte rendu à
l’Academie de Sciences, 313, série II, Paris, France, 1991, p. 133-138.
Opfermann J., Blumm J., Emmerich W.D., “Simulation of sintering behavior of a ceramic
green body using advanced thermokinetic analysis”, Thermochimica Acta, vol. 318, 1998,
p. 213-220.
Piccirillo N., Lee D., “Jetting in powder Injection Molding”, Advanced in powder Metallurgy,
vol. 2, 1991, p. 119-126.
Pillet M., Les Plans d’Expériences par la Méthode TAGUCHI, Les Editions d’organization,
Quirmach P., Schartz S., Magerl AD., “The application of injection moulding technology in
modern tablewareproduction”, CFI Ceramirc Forum International, vol. 3, 2004, p. 1-5.
Schimmerling P., Sisson J.C., Zaïdi A., Pratique des plans d’expérience, Lavoisier, 1998.
Song J., Ayad G., Barriere T., Gelin J.C., Liu B., Renault D., “Modelling, Simulation and
simulation and identification of solid state sintering after metal injection moulding”,
Proceeding of 8th ESAFORM conference on Material Forming, vol. 1, 2005, p. 171-174.
Song J., Gelin J.C., Barriere T., Liu B., “Experiments and numerical modelling of solid state
sintering for 316L stainless steel components”, Journal of Materials Processing
Technology, vol. 177, 2006, p. 352-355.
Vergara F.E., Khouja M., Michalewicz Z., “An evolutionary algorithm for optimizing
material flow in supply chains”, Computers & Industrial Engineering, vol. 3, 2002,
p. 407-421.