The sensitivity equation method in fluid mechanics
DOI:
https://doi.org/10.13052/REMN.17.31-61Keywords:
flow sensitivities, Navier-Stokes, optimal design, nearby flows, uncertainty analysisAbstract
We present the sensitivity Equation Method (SEM) as a complementary tool to adjoint based optimisation methods. Flow sensitivities exist independently of a design problem and can be used in several non-optimization ways: characterization of complex flows, fast evaluation of flows on nearby geometries, and input data uncertainties cascade through the CFD code to yield uncertainty estimates of the flow field. The Navier-Stokes and sensitivity equationssensitivity are solved by an adaptive finite element method.
Downloads
References
A.Griewank, Evaluating Derivatives, SIAM, Philadelphia, PA, 2000.
Anderson W. K., Newman J. C.,Whitfield D. L., Nielsen E. J., “ Sensitivity Analysis of Navier-
Stokes Equations on Unstructured Meshes unsing Complex Variables”, AIAA Journal, vol.
, no 1, p. 56-53, 2001.
Blackwell B. F., Dowding K. J., Cochran R. J., Dobranich D., “ Utilization of sensitivity coefficients
to guide the design of a Thermal battery”, Proceedings of the 1998 ASME/IMECE,
ASME, Anaheim, CA, p. 73-82, 1998. HTD-Vol. 561-5.
Borggaard J., Burns J., “ A PDE sensitivity equation method for optimal aerodynamic design”,
J. Comput. phys., vol. 136, n◦ 2, p. 367-384, 1997.
Borggaard J., Pelletier D., “ Optimal Shape Design in Forced Convection Using Adaptive Finite
Elements”, 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January, 1998.
AIAA Paper 98-0908.
Borggaard J., Pelletier D., Vugrin K., “ On Sensitivity Analysis for Problems with Numerical
Noise”, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Atlanta, GA, September, 2002. AIAA Paper 2002-5553.
Dennis Jr. J., Schnabel R., Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, 1983.
Duvigneau R., Pelletier D., “ Evaluation of Nearby Flows by a Shape Sensitivity Equation
Method”, 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan., 2005a.
AIAA Paper 2005–0127.
Duvigneau R., Pelletier D., “ On Accurate Boundary Conditions for a Shape Sensitivity Equation
Method”, International Journal for Numerical Methods in Fluids, vol. 50, p. 1417-164,
b.
Godfrey A. G., Cliff E. M., “ Direct Calculation of Aerodynamic Force Derivatives: A
Sensitivity-Equation Approach”, 36th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, January, 1998. AIAA Paper 98-0393.
Godfrey A. G., Cliff E. M., “ Sensitivity Equations for Turbulent Flows”, 39th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, Jan., 2001. AIAA Paper 2001-1060.
Gunzburger M. D., Perspectives in Flow Control and Optimization, SIAM, 2002.
Haug E. J., Choi K., Komkov V., Design sensitivity analysis of structural systems, vol. 177 of
Mathematics in science and engineering, Academic Press, Orlando, 1986.
Hay A., Etienne S., Duvigneau R., Pelletier D., “ Evaluation of Flows on Nearby Geometries by
a Shape Sensitivity EquationMethod”, 44th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, 9-12 January, 2006. AIAA Paper 2006-1296.
Ilinca F., Pelletier D., “ A Continuous shape sensitivity equation method for unsteady laminar
flows”, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006,
TU Delft, The Netherlands, september, 2006.
Ilinca F., Pelletier D., Borggaard J., “ A Continuous Second Order Sensitivity Equation Method
for Time-Dependent Incompressible Laminar Flows”, 35th AIAA Fluid Dynamics Conference
and Exhibit, Toronto, ON, June, 2005. AIAA Paper 2005-5252.
KleiberM., Antúnez H., Hien T. D., Kowalczyk P.,Parameter Sensitivity in Nonlinear Mechanics,
John Wiley and Sons, 1997.
Lépine J., Guibault J., Trépanier J.-Y., Pépin F., “ Optimized NonUniform Rational B-Spline
Geometrical Representation for Aerodynamic Design of Wings”, AIAA Journal, vol. 39,
n◦ 11, p. 2033-2041, 2001.
Limache A., Aerodynamic Modeling Using Computational Fluid Dynamics and Sensitivity
Equations, PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA,
Lu S.-Y., Sagaut P., “ Direct sensitivity analysis for smooth unsteady compressible flows using
complex differentiation Design”, International Journal for Numerical Methods in Fluids,
Lyness J., Moler C., “ Numerical differentiation of analytic functions”, SIAM J. Numer. Anal,
vol. 4, n◦ 2, p. 202-210, June, 1967.
Mahieu J., Etienne S., Pelletier D., Borggaard J., “ A Second-order sensitivity equation method
for laminar flow”, International Journal of Computational Fluid Dynamics, vol. 19, n◦ 2,
p. 143-157, February, 2005.
Martins J. R. R. A., Stradza P., Alonso J. J., “ The complex-step derivative approximation”,
ACM transactions on mathematical software - TOMS, vol. 29, n◦ 3, p. 245-262, 2003.
Pelletier D., “ Adaptive Finite Element Computations of Complex Flows”, International Journal
for Numerical Methods in Fluids, vol. 31, p. 189-202, 1999.
Pelletier D., Ilinca F., “ Adaptive Remeshing for the k−ǫModel of Turbulence”, AIAA Journal,
vol. 35, n◦ 4, p. 640-646, 1997.
Pelletier D., Roache P. J., Verification and Validation in Computational Heat Transfer, Handbook
of Numerical Heat Transfer, 2nd edn,Wiley, Hoboken, New Jersey, chapter 13,March,
Peraire J., Vahdati M., Morgan K., Ziekiewicz O., “ Adaptive Remeshing for Compressible
Flow Computations”, Journal of Computational Physics, vol. 72, n◦ 2, p. 449-466, 1987.
Putko M., Newman P., Taylor A., Green L., “ Approach for uncertainty propagation and robust
design in CFD using sensitivity derivatives”, 15th AIAA Computational Fluid Dynamics
Conference, Anaheim, CA, June, 2001. AIAA Paper 2001-2528.
Roache P. J., Verification and Validation in Computational Science and Engineering, Hermosa
publishers, Albuquerque, NM, 1998.
Sherman L. L., Taylor III A. C., Green L., Newman P. A., Hou G.W., Korivi V. M., “ First- and
second-order aerodynamic sensitivity derivatives via automatic differentiation”, Journal of
Computational Physics, vol. 129, n◦ 2, p. 307-331, 1996.
Stanley L. G., Stewart D. L., Design Sensitivity Analysis: Computational Issues of Sensitivity
Equation Methods, vol. 25 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 2001.
Turgeon E., PelletierD., “ Verification and Validation in CFD Using an Adaptive Finite-Element
Method”, CASI Journal, vol. 48, n◦ 4, p. 219-231, December, 2002.
Turgeon É., Pelletier D., Borggaard J., “ A Continuous Sensitivity Equation Approach to Optimal
Design in Mixed Convection”, 33rd AIAA Thermophysics Conference, Norfolk, VA,
Jun.-Jul., 1999. AIAA Paper 99-3625.
Turgeon É., Pelletier D., Borggaard J., “ A Continuous Sensitivity Equation Method for Flows
with Temperature Dependent Properties”, 8th AIAA/NASA/USAF/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Long Beach, CA, Sep., 2000a. AIAA Paper
-4821.
Turgeon É., Pelletier D., Borggaard J., “ A General Continuous Sensitivity Equation Formulation
for Complex Flows”, 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA, Sep., 2000b. AIAA Paper 2000-4732.
Turgeon É., Pelletier D., Borggaard J., “ A General Purpose Sensitivity Equation Formulation
for Complex Flows”, Proceedings of the 8th Annual Conference of the Computational Fluid
Dynamics Society of Canada, vol. 2, Montréal, Canada, p. 697-704, June 11-13, 2000c.
Turgeon É., PelletierD., Borggaard J., “ Application of a Sensitivity EquationMethod to the k−
ǫ Model of Turbulence”, 15th AIAA Computational Fluid Dynamics Conference, Anaheim,
CA, Jun., 2001a. AIAA Paper 2001-2534.
Turgeon É., Pelletier D., Borggaard J., “ Computation of Airfoil Flow Derivatives Using a
Continuous Sensitivity Equation Method”, 8th CASI Aerodynamics Symposium, Toronto,
Canada, April, 2001b.
Turgeon É., Pelletier D., Borggaard J., “ A General Continuous Sensitivity Equation Formulation
for the k−ǫModel of Turbulence”, 31st AIAA Fluid Dynamics Conferenceand Exhibit,
Anaheim, CA, Jun., 2001c. AIAA Paper 2001-3000.
Turgeon É., Pelletier D., Borggaard J., “ Sensitivity and Uncertainty Analysis for Variable Property
Flows”, 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan., 2001d.
AIAA Paper 2001-0139.
Vanderplaats G. N., Numerical optimization techniques for engineering design, third edn, Vanderplaats
Research and Development, Colorado Springs, CO, 1999.
Zienkiewicz O. C., Zhu J. Z., “ The Superconvergent Patch Recovery and a Posteriori Error
Estimates. Part 1: The Recovery Technique”, International Journal for Numerical Methods
in Engineering, vol. 33, p. 1331-1364, 1992a.
Zienkiewicz O. C., Zhu J. Z., “ The Superconvergent Patch Recovery and a Posteriori Error
Estimates. Part 2: Error Estimates and Adaptivity”, International Journal for Numerical
Methods in Engineering, vol. 33, p. 1365-1382, 1992b.