A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization

Authors

  • David W. Zingg Senior Canada Research Chair in Computational Aerodynamics University of Toronto Institute of Aerospace Studies 4925 Dufferin St., Toronto, Ontario Canada
  • Marian Nemec NASA Ames Research Center, Moffett Field, California, USA
  • Thomas H. Pulliam NASA Ames Research Center, Moffett Field, California, USA

DOI:

https://doi.org/10.13052/REMN.17.103-126

Keywords:

aerodynamics, computational fluid dynamics, adjoint methods, genetic algorithms

Abstract

A genetic algorithm is compared with a gradient-based (adjoint) algorithm in the context of several aerodynamic shape optimization problems. The examples include singlepoint and multipoint optimization problems, as well as the computation of a Pareto front. The results demonstrate that both algorithms converge reliably to the same optimum. Depending on the nature of the problem, the number of design variables, and the degree of convergence, the genetic algorithm requires from 5 to 200 times as many function evaluations as the gradientbased algorithm.

Downloads

Download data is not yet available.

References

Anderson W., Newman J., Whitfield D., Nielsen E., “ Sensitivity analysis for the Navier-Stokes

equations on unstructured meshes using complex variables”, AIAA J., vol. 39, n° 1, p. 56-63,

Coello Coello C. A., “ Evolutionary Multi-Objective Optimization: A Critical Review”, Evolutionary

Optimization, Kluwer Academic, New York, p. 117-146, 2002.

Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, Chichester, New York,

Dennis J., Schnabel R., Numerical Methods for Unconstrained Optimization, Prentice-Hall,

Englewood Cliffs, N.J., 1983.

Elliott J., Peraire J., “ Practical 3D aerodynamic design and optimization using unstructured

meshes”, AIAA J., vol. 35, p. 1479-1485, 1997.

Giannakoglou K., “ Design of optimal aerodynamic shapes using stochastic optimization methods

and computational intelligence”, Progress in Aerospace Sciences, vol. 38, p. 43-76,

Gill P., Murray W., Saunders M., “SNOPT: An SQP algorithm for large-scale constrained optimization”,

SIAM J. Optim., vol. 12, p. 979-1006, 2002.

Goldberg D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-

Wesley, Reading, Mass., 1989.

Hicks R., Henne P., “Wing design by numerical optimization”, J. of Aircraft, vol. 3, p. 407-412,

Hicks R., Murman E., Vanderplaats G., An assessment of airfoil design by numerical optimization,

TM n° X-3092, NASA, July, 1974.

Holst T. L., Pulliam T. H., Aerodynamic Shape Optimization Using A Real-Number-Encoded

Genetic Algorithm, Technical Report n° 2001-2473, AIAA, June, 2001.

Jameson A., “ Aerodynamic design via control theory”, J. of Scientific Computing, vol. 3, n° 3,

p. 233-260, 1988.

Marco N., Désidéri J.-A., Lantéri S., Multi-objective optimization in CFD by genetic algorithms,

Technical report n° 3686, Institut National de Recherche en Informatique et en Automatique

(INRIA), France, April, 1999.

Nemec M., Optimal Shape Design of Aerodynamic Configurations: A Newton-Krylov Approach,

Ph.d. Thesis, University of Toronto, Canada, 2002.

Nemec M., Zingg D., “ Newton-Krylov algorithm for aerodynamic design using the Navier-

Stokes equations”, AIAA J., vol. 40, p. 1146-1154, 2002.

Nemec M., Zingg D., Pulliam T., “ Multipoint and Multi-Objective Aerodynamic Shape Optimization”,

AIAA J., vol. 42, p. 1057-1065, 2004.

Nielsen E., AndersonW., “ Aerodynamic design optimization on unstructured meshes using the

Navier-Stokes equations”, AIAA J., vol. 37, p. 1411-1419, 1999.

Nocedal J., Wright S., Numerical Optimization, Springer-Verlag, New York, 1999.

Obayashi S., “ Aerodynamic optimization with evolutionary algorithms”, Inverse Design and

Optimization Methods, Lecture Series 1997-05, von Karman Institute for Fluid Dynamics,

Brussels, Belgium, 1997.

Oyama A.,Wing design using evolutionary algorithms, Ph.d. Thesis, Tohoku University, Japan,

Pironneau O., “ On optimum design in fluid mechanics”, J. Fluid Mech., vol. 64, p. 97-110,

Poloni C., Giurgevich A., Onesti L., Pediroda V., “ Hybridization of a Multi-Objective Genetic

Algorithm, a Neural Network and a Classical Optimizer for Complex Design in Fluid

Dynamics”, Comput. Methods Appl. Mech. Eng., vol. 18, p. 403-420, 2000.

Pueyo A., Zingg D., “ Efficient Newton-Krylov Solver for Aerodynamic Computations”, AIAA

J., vol. 36, p. 1991-1997, 1998.

Pulliam T., “ Efficient Solution Methods for The Navier-Stokes Equations”, Numerical Techniques

for Viscous Flow Computation In Turbomachinery Bladings, von Karman Institute

for Fluid Dynamics, Brussels, Belgium, 1985.

Reuther J., Jameson A., Alonso J., Rimlinger M., Saunders D., “ Constrained multipoint aerodynamic

shape optimization using an adjoint formulation and parallel computers, part 1”,

J. of Aircraft, vol. 36, p. 51-60, 1999.

Vicini A., Quagliarella D., “ Inverse and direct airfoil design using a multiobjective genetic

algorithm”, AIAA J., vol. 35, p. 1499-1505, 1997.

Vicini A., Quagliarella D., “ Airfoil andWing Design through Hybrid Optimization Strategies”,

AIAA J., vol. 37, p. 634-642, 1999.

Zingg D., Billing L., Toward Practical Aerodynamic Design Through Numerical Optimization,

Technical report n° 2007-3950, AIAA, June, 2007.

Zingg D., Elias S., On Aerodynamic Optimization Under a Range of Operating Conditions,

Technical Report n° 2006-1053, AIAA, Jan., 2006.

Downloads

Published

2008-08-23

How to Cite

Zingg, D. W. ., Nemec, M. ., & Pulliam, T. H. . (2008). A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. European Journal of Computational Mechanics, 17(1-2), 103–126. https://doi.org/10.13052/REMN.17.103-126

Issue

Section

Original Article