A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization
DOI:
https://doi.org/10.13052/REMN.17.103-126Keywords:
aerodynamics, computational fluid dynamics, adjoint methods, genetic algorithmsAbstract
A genetic algorithm is compared with a gradient-based (adjoint) algorithm in the context of several aerodynamic shape optimization problems. The examples include singlepoint and multipoint optimization problems, as well as the computation of a Pareto front. The results demonstrate that both algorithms converge reliably to the same optimum. Depending on the nature of the problem, the number of design variables, and the degree of convergence, the genetic algorithm requires from 5 to 200 times as many function evaluations as the gradientbased algorithm.
Downloads
References
Anderson W., Newman J., Whitfield D., Nielsen E., “ Sensitivity analysis for the Navier-Stokes
equations on unstructured meshes using complex variables”, AIAA J., vol. 39, n° 1, p. 56-63,
Coello Coello C. A., “ Evolutionary Multi-Objective Optimization: A Critical Review”, Evolutionary
Optimization, Kluwer Academic, New York, p. 117-146, 2002.
Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, Chichester, New York,
Dennis J., Schnabel R., Numerical Methods for Unconstrained Optimization, Prentice-Hall,
Englewood Cliffs, N.J., 1983.
Elliott J., Peraire J., “ Practical 3D aerodynamic design and optimization using unstructured
meshes”, AIAA J., vol. 35, p. 1479-1485, 1997.
Giannakoglou K., “ Design of optimal aerodynamic shapes using stochastic optimization methods
and computational intelligence”, Progress in Aerospace Sciences, vol. 38, p. 43-76,
Gill P., Murray W., Saunders M., “SNOPT: An SQP algorithm for large-scale constrained optimization”,
SIAM J. Optim., vol. 12, p. 979-1006, 2002.
Goldberg D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, Mass., 1989.
Hicks R., Henne P., “Wing design by numerical optimization”, J. of Aircraft, vol. 3, p. 407-412,
Hicks R., Murman E., Vanderplaats G., An assessment of airfoil design by numerical optimization,
TM n° X-3092, NASA, July, 1974.
Holst T. L., Pulliam T. H., Aerodynamic Shape Optimization Using A Real-Number-Encoded
Genetic Algorithm, Technical Report n° 2001-2473, AIAA, June, 2001.
Jameson A., “ Aerodynamic design via control theory”, J. of Scientific Computing, vol. 3, n° 3,
p. 233-260, 1988.
Marco N., Désidéri J.-A., Lantéri S., Multi-objective optimization in CFD by genetic algorithms,
Technical report n° 3686, Institut National de Recherche en Informatique et en Automatique
(INRIA), France, April, 1999.
Nemec M., Optimal Shape Design of Aerodynamic Configurations: A Newton-Krylov Approach,
Ph.d. Thesis, University of Toronto, Canada, 2002.
Nemec M., Zingg D., “ Newton-Krylov algorithm for aerodynamic design using the Navier-
Stokes equations”, AIAA J., vol. 40, p. 1146-1154, 2002.
Nemec M., Zingg D., Pulliam T., “ Multipoint and Multi-Objective Aerodynamic Shape Optimization”,
AIAA J., vol. 42, p. 1057-1065, 2004.
Nielsen E., AndersonW., “ Aerodynamic design optimization on unstructured meshes using the
Navier-Stokes equations”, AIAA J., vol. 37, p. 1411-1419, 1999.
Nocedal J., Wright S., Numerical Optimization, Springer-Verlag, New York, 1999.
Obayashi S., “ Aerodynamic optimization with evolutionary algorithms”, Inverse Design and
Optimization Methods, Lecture Series 1997-05, von Karman Institute for Fluid Dynamics,
Brussels, Belgium, 1997.
Oyama A.,Wing design using evolutionary algorithms, Ph.d. Thesis, Tohoku University, Japan,
Pironneau O., “ On optimum design in fluid mechanics”, J. Fluid Mech., vol. 64, p. 97-110,
Poloni C., Giurgevich A., Onesti L., Pediroda V., “ Hybridization of a Multi-Objective Genetic
Algorithm, a Neural Network and a Classical Optimizer for Complex Design in Fluid
Dynamics”, Comput. Methods Appl. Mech. Eng., vol. 18, p. 403-420, 2000.
Pueyo A., Zingg D., “ Efficient Newton-Krylov Solver for Aerodynamic Computations”, AIAA
J., vol. 36, p. 1991-1997, 1998.
Pulliam T., “ Efficient Solution Methods for The Navier-Stokes Equations”, Numerical Techniques
for Viscous Flow Computation In Turbomachinery Bladings, von Karman Institute
for Fluid Dynamics, Brussels, Belgium, 1985.
Reuther J., Jameson A., Alonso J., Rimlinger M., Saunders D., “ Constrained multipoint aerodynamic
shape optimization using an adjoint formulation and parallel computers, part 1”,
J. of Aircraft, vol. 36, p. 51-60, 1999.
Vicini A., Quagliarella D., “ Inverse and direct airfoil design using a multiobjective genetic
algorithm”, AIAA J., vol. 35, p. 1499-1505, 1997.
Vicini A., Quagliarella D., “ Airfoil andWing Design through Hybrid Optimization Strategies”,
AIAA J., vol. 37, p. 634-642, 1999.
Zingg D., Billing L., Toward Practical Aerodynamic Design Through Numerical Optimization,
Technical report n° 2007-3950, AIAA, June, 2007.
Zingg D., Elias S., On Aerodynamic Optimization Under a Range of Operating Conditions,
Technical Report n° 2006-1053, AIAA, Jan., 2006.