Turbine cascade design via multigrid-aided finite-difference progressive optimization

Authors

  • Luciano A. Catalano Dipartimento di Ingegneria Meccanica e Gestionale, & Centro di Eccellenza in Meccanica Computazionale,Politecnico di Bari, via Re David 200 Bari, Italy
  • Andrea Dadone Dipartimento di Ingegneria Meccanica e Gestionale, & Centro di Eccellenza in Meccanica Computazionale,Politecnico di Bari, via Re David 200 Bari, Italy
  • Vito S.E. Daloiso Dipartimento di Ingegneria Meccanica e Gestionale, & Centro di Eccellenza in Meccanica Computazionale,Politecnico di Bari, via Re David 200 Bari, Italy

DOI:

https://doi.org/10.13052/REMN.17.199-215

Keywords:

optimization, multigrid, finite difference, turbine cascade

Abstract

This paper proposes an efficient and robust procedure for the design optimization of turbomachinery cascades in inviscid and turbulent transonic flow conditions. It employs a progressive strategy, based on the simultaneous convergence of the design process and of all iterative solutions involved (flow analysis, gradient evaluation), also including the global refinement from a coarse to a sufficiently fine mesh. Cheap, flexible and easy-to-program Multigrid-Aided Finite Differences are employed for the computation of the sensitivity derivatives. The entire approach is combined with an upwind finite-volume method for the Euler and the Navier-Stokes equations on cell-vertex unstructured (triangular) grids, and validated versus the inverse design of a turbine cascade. The methodology turns out to be robust and highly efficient, the converged design optimization being obtained in a computational time equal to that required by 15 to 20 (depending on the application) multigrid flow analyses on the finest grid.

Downloads

Download data is not yet available.

References

Beux F., Dervieux A., “ A hierarchical approach for shape optimization”, Eng. Comput., vol.

, n° 6, p. 25-48, 1994.

Brandt A., “ Multi-level adaptive solutions to boundary-value problems”, Math. Comp., vol. 31,

p. 333-390, 1977.

Catalano L. A., “ A new reconstruction scheme for the computation of inviscid compressible

flows on 3D unstructured grids”, International Journal for Numerical Methods in Fluids,

vol. 40, n° 1-2, p. 273-279, 2002.

Catalano L. A., Dadone A., Daloiso V. S. E., “ Progressive optimization on unstructured grids

using multigrid-aided finite-difference sensitivities”, International Journal For Numerical

Methods In Fluids, vol. 47, n° 10-11, p. 1383-1391, 2005a.

Catalano L. A., Dadone A., Daloiso V. S. E., Mele G., Progressive optimization using orthogonal

shape functions and efficient finite-difference sensitivities, AIAA Paper 2003-3961,

a.

Catalano L. A., Daloiso V. S. E., Accurate computation of 2D turbulent compressible flows on

unstructured grids, AIAA Paper 2003, 2003b.

Catalano L. A., Daloiso V. S. E., “ Upwinding and Implicit Residual Smoothing on cell-vertex

unstructured grids”, International Journal For Numerical Methods In Fluids, vol. 47, n° 8-9,

p. 895-902, 2005b.

Cook P. H., McDonald M. A., Firmin M. C. P., “ Aerofoil RAE 2822 - Pressure Distributions,

and Boundary Layer and Wake Measurements”, AGARD AR-138, p. A6.1–A6.77, 1979.

Dadone A., Grossman B., “ Fast convergence of viscous airfoil design problems”, AIAA paper

-2547, 2000a.

Dadone A., Grossman B., “ Progressive Optimization of Inverse Fluid Dynamic Design Problems”,

Computers and Fluids, vol. 29, p. 1-32, 2000b.

Farin G., Curves and surfaces for computer aided geometric design. A practical guide, Third

edition. Academic Press, Inc., 1993.

Held C., Dervieux A., “ One-shot airfoil optimisation without adjoint”, Comput. Fluids, vol.

, n° 8, p. 1015-1049, 2002.

Jameson A., “ Aerodynamic design via control theory”, SIAM J. Sci. Comput., vol. 3, p. 233-

, 1988.

Kuruvila G., Ta’asan S., Salas M. D., Airfoil desing and optimization by the one-shot method.,

AIAA Paper 95-0478, 1995.

Mohammadi B., “ A new optimal shape design procedure for inviscid and viscous turbulent

flows”, Int. J. Numer. Meth. Fluids, vol. 25, p. 183-203, 1997.

Mohammadi B., Pironneau O., Applied shape optimization for fluids., Oxford Science Publications,

Clarendon Press., 2001.

Roe P. L., “ Characteristic based schemes for the Euler equations”, Ann. Rev. Fluid Mech, vol.

, p. 337-365, 1986.

Wilcox D. C., “ Reassessment of the scale-determining equation for advanced turbulence models”,

AIAA Journal, vol. 26, n° 11, p. 1299-1310, 1988.

Downloads

Published

2008-09-27

How to Cite

Catalano, L. A., Dadone, A. ., & Daloiso, V. S. . (2008). Turbine cascade design via multigrid-aided finite-difference progressive optimization. European Journal of Computational Mechanics, 17(1-2), 199–215. https://doi.org/10.13052/REMN.17.199-215

Issue

Section

Original Article