Analyse numérique du régime THD dans un patin échelon

Comparaison entre les modèles de Reynolds et de Navier-Stokes

Authors

  • Mihai B. Dobrica Laboratoire de Mécanique des Solides – UMR CNRS 6610 Université de Poitiers Boulevard Marie et Pierre Curie, Téléport 2, BP 30179 F-86962 Futuroscope Chasseneuil cedex
  • Michel Fillon Laboratoire de Mécanique des Solides – UMR CNRS 6610 Université de Poitiers Boulevard Marie et Pierre Curie, Téléport 2, BP 30179 F-86962 Futuroscope Chasseneuil cedex

DOI:

https://doi.org/10.13052/REMN.16.683-701

Keywords:

hydrodynamic lubrication, Rayleigh step bearing, thermal effects, finite volumes method

Abstract

A lack of thermohydrodynamic (THD) models adapted to discontinuous fluid film geometries can be noted in the lubrication-related literature. The finite differences method, largely used in THD analysis, cannot be easily applied to discontinuous flow domains. This article proposes two finite volumes based models, suitable for discontinuous domains. The first model, based on Reynolds generalized equation, lacks in accuracy near the discontinuity line, but gains in computing speed. The second model, based on Navier-Stokes equations, is more accurate but also significantly more demanding in terms of computing requirements. The two models are applied and compared on the simple geometry of a bi-dimensional Rayleigh step bearing. Different configurations are analyzed, allowing the validation of the Reynolds model for most of the cases encountered in fluid film lubrication.

Downloads

Download data is not yet available.

References

Arghir M., Alsayed A., Nicolas D., “The Finite Volume Solution of the Reynolds Equation of

Lubrication with Film Discontinuities”, Int. J. of Mech. Sc., vol. 44, 2002, p. 2119-2132.

Boncompain R., Fillon M., Frêne J., “Analysis of Thermal Effects in Hydrodynamic

Bearings”, ASME J. of Tribology, vol. 108, 1986, p. 219-224.

Braun M.J., Choy F.K., Zhou Y.M., “The Effects of a Hydrostatic Pocket Aspect Ratio,

Supply Orifice Position, and Attack Angle on Steady-State Flow Patterns, Pressure, and

Shear Characteristics”, ASME J. of Tribology, vol. 115, 1993, p. 678-685.

Braun M.J., Zhou Y.M., Choy F.K., “Transient Flow Patterns and Pressure Characteristics in

a Hydrostatic Pocket”, ASME J. of Tribology, vol. 116, 1994, p. 139-146.

Dowson D., “A Generalized Reynolds Equation for Fluid Film Lubrication”, Int. J. Mech. Sc.,

vol. 4, 1962, p. 159-170.

Ezzat H.A., Rhode S.M., “A Study of Thermohydrodynamic Performance of Finite Slider

Bearings”, ASME J. of Lubrication Tech., vol. 95, 1973, p. 298-307.

Fillon M., Khonsari M.M., “Thermohydrodynamic Design Charts for Tilting-Pad Journal

Bearings”, ASME J. of Tribology, vol. 118, 1996, p. 232-238.

Gandjalikhan N., Moayeri M.S., “Three-dimensional Thermohydrodynamic Analysis of

Axially Grooved Journal Bearings”, I. Mech. E. (Part J), vol. 216, 2002, p. 35-47.

Han T., Paranjpe R.S., “A Finite Volume Analysis of Thermohydrodynamic Performance of

Journal Bearings”, ASME J. of Tribology, vol. 112, 1990, p. 557-566.

Hatakenaka K., Tanaka M., “Thermohydrodynamic Performance of Journal Bearings with

Partial Reverse Flow and Finger-Type Cavitation”, I. Mech. E. (Part J), 2002, vol. 216,

p. 315-325.

He M., Allaire P., Cloud C.H., Nicholas, J., “A Pressure Dam Bearing Analysis with

Adiabatic Thermal Effects”, Tribology Trans., vol. 47, 2004, p. 70-76.

Keogh P.S., Gomiciaga R., Khonsari M.M., “CFD Based Design Techniques for Thermal

Prediction in a Generic Two-axial Groove Hydrodynamic Journal Bearing”, ASME J. of

Tribology, vol. 119, 1997, p. 428-436.

Patankar S.V., Numerical Heat Transfer and Fluid Flow, New York, Hemisphere, 1980.

Stone H.L., “Iterative Solutions of Implicit Approximations of Multidimensional Partial

Differential Equations”, SIAM J. Numerical Analysis, vol. 5, 1968, p. 530-558.

Downloads

Published

2007-09-14

How to Cite

Dobrica, M. B. ., & Fillon, M. . (2007). Analyse numérique du régime THD dans un patin échelon: Comparaison entre les modèles de Reynolds et de Navier-Stokes. European Journal of Computational Mechanics, 16(6-7), 683–701. https://doi.org/10.13052/REMN.16.683-701

Issue

Section

Original Article