Résolution des équations de Saint-Venant par la méthode des volumes finis non structurés
DOI:
https://doi.org/10.13052/REMN.16.723-747Keywords:
Saint-Venant equations, numerical models, unstructured finite-volumes, projection techniqueAbstract
This paper presents a resolution of the Saint-Venant equations by a projection method. Using unstructured finite-volumes methods, a 2-D horizontal shallow water numerical model is developed. Two applications with complex bathymetries are reported in this article. The model can be applied to the calculation of river, estuarine and coastal flows.
Downloads
References
Alcrudo F., Garcia-Navarro P., “A high-resolution Godunov-type scheme in finite volumes
for the 2D shallow-water equations”, Int. J. Numer. Meth. Fluids, vol. 16, n° 6, 1993,
p. 489-505.
Alcrudo F., Gil E., “The malpasset dam break case study”, The Proceeding of the 4th CADAM
meeting, Zaragoza, Spain, 1999. p. 95-109.
Borthwick A.G.L., Karr E.T., “Shallow flow modeling using curvilinear depth-averaged
stream function and vorticity transport equations”, Int. J. Numer. Meth. Fluids, vol. 17,
p. 417-445.
Brufau P., Garcia-Navarro P., Vázquez-Cendón M.E., “Zero mass error using unsteady
wetting-drying conditions in shallow flows over dry irregular topography”, Int. J. Numer.
Meth. Fluids, vol. 45, 2004, p. 1047-1082.
Brufau P., Vázquez-Cendón M.E., García-Navarro P., “A numerical model for the flooding
and drying of irregular domains”, Int. J. Numer. Meth. Fluids, vol. 39, 2002, p. 247-275.
Caleffi V., Valiani A., Bernini A., “Fourth-rder balanced source term treatment in central
WENO schemes for shallow water equations”, J. Comp. Phys, vol. 218, 2006, p. 228-245.
Chan C.T., Anastasiou K., “Solution of incompressible flows with or without a free surface
using the finite volume method on unstructured triangular meshes”, Int. J. Numer. Meth.
Fluids, vol. 29, 1999, p. 35-57.
Chorin A. J., “Numerical solution of the Navier-, n° 1, 2000, p. 35-58, “Stokes equations”.
Math. Comput., vol. 22, n° 104, 1968, p. 745-762.
Chorin A.J., “On the convergence of discrete approximations to the Navier-Stokes equations”
Math. Comput., vol. 23, 1969, p. 341-353.
Fennema R., Chaudry M., “Explicit methods for 2-D transient free-surface flows”,
J. Hydraul. Eng., ASCE, vol. 116, n° 8, 1990, p. 1013-1034.
Garcia-Navarro P., Alcrudo F., “Saviron J.M. 1-D open-channel flow simulation using TVDMcCormack
scheme”, J. Hydraul. Eng., ASCE, vol. 118, n° 10, 1992, p. 1359-1372.
Guillou S., Modélisation des écoulement côtiers et estuariens : étude mathématique et
applications en coordonnes généralisées, Thèse de doctorat, Université Paris VI, 1996.
Guillou S., Nguyen K.D., “An improved technique for solving two-dimensional shallow water
problems”, Int. J. Numer. Meth. Fluids, vol. 29, n° 4, 1999, p. 465-483.
Hanich L., Résolution des équations de la mécanique des fluides par des méthodes TVD en
coordonnées généralisées, Thèse doctorale, Université de Caen, 1996.
Harten A., Engquist B., Osher S., “Chakravarthy S.R. Uniformly high order accurate nonoscillatory
schemes”, J. Comp. Phys, vol. 71, 1987, p. 231.
Hervouet J.M., Petitjean A., “Malpasset dam break revisited with two-dimensional
computations”, Journal of Hydraulic Research, vol. 37, n° 6, 1999, p. 777-788.
Hervouet J.M., “A high resolution 2-D dam-break model using parallelization”, Hydrological
Processes, vol. 14, n° 13, 2000, p. 2211-2230.
Hervouet J.M., Hydrodynamique des écoulements à surface libre: Modélisation numérique
avec la méthode des éléments finis, Paris, Presses de l’Ecole Nationale des Ponts et
Chaussées, 2003.
Kobayashi M.H., Pereira J.M.C., Pereira J.C.F., “A conservative finite-volume second-order
accurate projection method on hybrid unstructured grids”, J. Comp. Phys, vol. 150, n° 1,
, p. 40-75.
Lien F.S., “A pressure-based unstructured grid method for all-speed flows”, Int. J. Numer.
Meth. Fluids, vol. 33, n° 3, 2000, p. 355-374.
Murillo J., Garcia-Navarro P., Brufau P., Burguete J., “Extension of an explicit finite volume
method to large time steps (CFL>1), application to shallow water flows”, Int. J. Numer.
Meth. Fluids, vol. 50, 2005, p. 63-102.
Nguyen V.H., Nguyen V.D., Ngo, H. C., “On some numerical methods for solving the 1-D
Saint-Venant Equations of general flow regime, Part 2: Verification and Application”,
Vietnam Journal of Mechanics, NCST de Vietnam, vol. 25, n° 1, 2003, p. 26-38.
Rhie C.M., Chow W.L, “Numerical study of the turbulent flow past an airfoil with trailing
edge separation”, AIAA J., vol. 21, n° 11, 1983, p. 1525-1532.
Roe P.L., “Approximate Riemann solvers, parameter vectors and difference schemes”,
J. Comp. Phys., vol. 43, n° 2, 1981, p. 357-372.
Ryhming I.L., Dynamique des fluides, Presses Polytechniques et Universitaires Romandes,
Saint-Venant, A.J.C., Théorie du mouvement non-permanent des eaux, avec application aux
crues des rivières et à l’introduction des marées dans leur lit, Compte-Rendu à l’Académie
des Sciences de Paris, vol. 73, 1871, p. 147-154.
Sleigh P.A, Gaskell P.H., Berzins M., Wright N.G., “An unstructured finite-volume algorithm
for predicting flow in rivers and estuaries”, Comput. Fluids, vol. 27, n° 4, 1998, p. 479-508.
Stevens D.E, Chan S. T., Gresho P., “An approximate projection method for incompressible
flow”, Int. J. Numer. Meth. Fluids, vol. 40, 2002, p. 1303-1325.
Tan W., Shallow water hydrodynamics, Amstrerdam, The Netherlands, Elsevier, 1992.
Tannehill J.C., Anderson D.A., Pletcher R.H., Computational Fluid Mechanics and Heat
Transfer, Chapter IV “Application of Numerical Methods to Selected Model Equations”,
nd Edition, Taylor & Francis, Washington D.C., p. 156-158, 1997.
Temam R., “Une méthode d’approximation de la solution des équations Navier-Stokes”, Bull.
Soc. Math. France, vol. 98, n° 4, 1968, p. 115-152.
Temam R., Navier-Stokes Equations, North-Holland, Amsterdam, 1977.
Valiani A., Caleffi V., Zanni A., “Case study: Malpasset dam-break simulation using a twodimensional
finite volume method”, J. Hydraul. Eng., ASCE, vol. 128, n° 5, 2002, p. 460-
Van Leer B., “Towards the ultimate conservative difference scheme, IV, A new approach to
numerical convection”, J. Comp. Phys, vol. 23, n° 3, 1977, p. 276-299.
Vukovic S, Sopta L., “ENO and WENO schemes with the exact conservation property for
one-dimensional shallow water equations”, J. Comp. Phys, vol. 179, n° 2, 2002, p. 593-
Zhao D.H., Shen H.W., Tabious G.Q., Lai J.S., Tan W.Y., “Finite-volume two-dimensional
unsteady-flow model for river basin”, J. Hydraul. Eng., ASCE, vol. 120, n° 7, 1994,
p. 864-883.
Zhou J.G., Causon D.M., Mingham C.G., Ingram D.M., “The surface gradient method for the
treatment of source terms in the shallow-water equations”, J. Comp. Phys, vol. 168, n° 1,
, p. 1-25.