Prise en compte de discontinuités en espace et en temps par la méthode des éléments finis étendus

Application à la dynamique de la rupture

Authors

  • Julien Réthoré LaMCoS, Laboratoire de Mécanique des Contacts et des Structures UMR 5259, INSA Lyon Bat. Jean d’Alembert, 18,20 rue des Sciences F-69621 Villeurbanne
  • Anthony Gravouil LaMCoS, Laboratoire de Mécanique des Contacts et des Structures UMR 5259, INSA Lyon Bat. Jean d’Alembert, 18,20 rue des Sciences F-69621 Villeurbanne
  • Alain Combescure LaMCoS, Laboratoire de Mécanique des Contacts et des Structures UMR 5259, INSA Lyon Bat. Jean d’Alembert, 18,20 rue des Sciences F-69621 Villeurbanne

DOI:

https://doi.org/10.13052/REMN.16.827-843

Keywords:

extended finite element, lasto-dynamics, time discontinuity, dynamic crack propagation

Abstract

This paper is aimed at presenting an application of the extended finite element method to the time variable in the framework of dynamic crack propagation. We take advantage of the partition of the unity properties of finite elements and use an enriched basis of shape functions in space as well as time. To solve the problem in time, we use a weak formulation including a continuity condition for the velocity. It allows to model mechanical problems with space and time discontinuities. Applications to dynamic crack growth simulation are presented.

Downloads

Download data is not yet available.

References

Babuska I., Melenk J., “The Partition of unity method”, International Journal for Numerical

Methods in Engineering, vol. 40, 1997, p. 727-758.

Belytschko T., Chen H., “Singular enrichment finite element method for elastodynamic crack

propagation”, International Journal of Computational Methods, vol. 1, n° 1, 2001, p. 1-15.

Belytschko T., Chen H., Jingxiao X., Goangseup Z., “Dynamic crack propagation based on loss

of hyperbolicity and a new discontinuous enrichment”, International Journal for Numerical

Methods in Engineering, vol. 58, 2003, p. 1873-1905.

de Borst R., Remmers J., Needleman A., “Mesh-independent numerical representations of

cohesive-zone models”, Engineering Fracture Mechanics, vol. 173, n° 2, 2006, p. 160-177.

Chessa J., Belytschko T., “Arbitrary discontinuites in space-time finite elements”, International

Journal for Numerical Methods in Engineering, vol. 61, n° 15, 2004, p. 2595-2614.

Freund L., Dynamic fracture mechanics, Cambridge Monographs on Mechanics and Applied

Mathematics, 1990.

Grégoire D.,Maigre H., Réthoré J., Combescure A., “Dynamic crack propagation under mixedmode

loading - Comparison between experiments and X-FEM simulations”, International

Journal of Solids and Structures, vol. 44, 2007, p. 6517-6534.

Kalthoff J., “Modes of dynamic shear failure in solids”, International Journal of Fracture,

vol. 101, 2000, p. 1-31.

Kanninen M., Popelar C., Advanced fracture mechanics, Oxford University Press, New York,

Maigre H., Rittel D., “Dynamic fracture detection using the force displacement reciprocity : application

to the compact compression specimen”, International Journal of Fracture, vol. 73,

, p. 67-79.

Moës N., Dolbow J., Belytschko T., “A finite element method for crack growth without remeshing”,

International Journal for Numerical Methods in Engineering, vol. 46, n° 1, 1999,

p. 133-150.

Remmers J., de Borst R., Needleman A., “A cohesive segments method for the simulation of

crack growth”, Computational Mechanics, vol. 31, 2003, p. 69-77.

Réthoré J., Méthode éléments finis étendus en espace et en temps : application à la propagation

dynamique des fissures, Thèse, Institut National de Sciences Appliquées de Lyon, 2005.

Réthoré J., Gravouil A., Combescure A., “A combined space time eXtended Finite Element

Method”, International Journal for Numerical Methods in Engineering, vol. 64, 2005a,

p. 260-284.

Réthoré J., Gravouil A., Combescure A., “An Energy Conserving Scheme for Dynamic Crack

Growth with the eXtended Finite Element Method”, International Journal for Numerical

Methods in Engineering, vol. 63, 2005b, p. 631-659.

Downloads

Published

2007-09-28

How to Cite

Réthoré, J. ., Gravouil, A. ., & Combescure, A. . (2007). Prise en compte de discontinuités en espace et en temps par la méthode des éléments finis étendus: Application à la dynamique de la rupture. European Journal of Computational Mechanics, 16(6-7), 827–843. https://doi.org/10.13052/REMN.16.827-843

Issue

Section

Original Article