Méthodes numériques de propagation de fissures appliquées au découpage des métaux

Authors

  • Vincent Lemiale Université de Franche-Comté, Institut FEMTO-ST – UMR 6174 Laboratoire de Mécanique Appliquée R. Chaléat 24 rue de l’Epitaphe, F-25000 Besançon cedex and Monash University, School of mathematical sciences Clayton campus building 28 Clayton VIC 3800, Australia
  • Jérôme Chambert Université de Franche-Comté, Institut FEMTO-ST – UMR 6174 Laboratoire de Mécanique Appliquée R. Chaléat 24 rue de l’Epitaphe, F-25000 Besançon cedex
  • Abdelhamid Touache Université de Franche-Comté, Institut FEMTO-ST – UMR 6174 Laboratoire de Mécanique Appliquée R. Chaléat 24 rue de l’Epitaphe, F-25000 Besançon cedex
  • Philippe Picart Université de Franche-Comté, Institut FEMTO-ST – UMR 6174 Laboratoire de Mécanique Appliquée R. Chaléat 24 rue de l’Epitaphe, F-25000 Besançon cedex

DOI:

https://doi.org/10.13052/REMN.16.889-911

Keywords:

finite element method, large deformations, remeshing, fracture criteria, crack propagation, element elimination method, discrete fracture approach, metal blanking

Abstract

The purpose of this paper is to propose an efficient numerical tool to simulate the blanking process and predict the geometric and mechanical characteristics of the blanked component. Two different strategies are proposed to simulate the crack propagation: a finite element elimination method and a discrete cracking approach. First, these methods are evaluated on the set-up test of an asymmetrical plate submitted to traction. Second, the ability of these methods to predict a realistic cut edge profile is analyzed within the framework of blanking. The load - penetration punch curves obtained by both fracture propagation methods are compared to the experimental one.

Downloads

Download data is not yet available.

References

Bouchard P.-O., Contribution à la modélisation numérique en mécanique de la rupture et

structures multimatériaux, Thèse de doctorat, Ecole des Mines de Paris, 2000.

Bouchard P.-O., Bay F., “Damage and crack propagation theories applied to sheet metal

cutting”, Proc. of the 14th European Conference on Fracture ECF14, Cracow, Poland,

September 8-13, ESIS/ASTM, EMAS, 2002.

Brokken D., Numerical modelling of ductile fracture in blanking, PhD Thesis, Eindhoven

University of Technology, The Netherlands, 1999.

Brokken D., Brekelmans W.A.M., Baaijens F.P.T., “Discrete ductile fracture modelling for

the metal blanking process”, Comp. Mech., vol. 26, 2000, p. 104-114.

Cockroft M.G., Latham D.J., “Ductility and the workability of metals”, J. Inst. Met., vol. 96,

, p. 33-39.

Erdogan F., Sih G.C., “On the crack extension in plates under plane loading and transverse

shear”, J. Basic Eng., vol. 85, 1963, p. 519-527.

Fang G., Zeng P., Lou L., “Finite element simulation of the effect of clearance on the forming

quality in the blanking process”, J. Mater.Proc. Techn., vol. 122, 2002, p. 249-254.

Freudenthal A.M., The Inelastic Behaviour of Engineering Materials and Structures, John

Wiley & Sons, New York, 1950.

Goijaerts A.M., Prediction of ductile fracture in metal blanking, PhD Thesis, Eindhoven

University of Technology, The Netherlands, 1999.

Hambli R., Etude expérimentale, numérique et théorique du découpage de tôles en vue de

l’optimisation du procédé, Thèse de doctorat, ENSAM d’Angers, 1996.

Hatanaka N., Yamaguchi K., Takakura N., “Finite element simulation of the shearing mechanism

in the blanking of sheet metal”, J. Mater.Proc. Techn., vol. 139, 2003, p. 64-70.

Homsi M., Morançay L., Roëlandt J.-M., « Techniques de remaillage appliquées au

découpage des métaux », Revue Europ. Eléments Finis, vol. 5, 1996, p. 297-321.

Ko D.C., Kim B.M., Choi J.C., “Finite element simulation of the shear process using the

element-kill method”, J. Mater.Proc. Techn., vol. 72, 1997, p. 129-140.

Komori K., “Simulation of shearing by node separation method”, Comp. & Struct., vol. 79,

, p. 197-207.

Komori K., “Ductile fracture criteria for simulating shear by node separation method”, Theo.

Appl. Frac. Mech., vol. 43, 2005, p. 101-114.

Lemiale V., Contribution à la modélisation et à la simulation numérique du découpage des

métaux, Thèse de doctorat, Université de Franche-Comté, Besançon, 2004.

Maillard A., Etude expérimentale et théorique du découpage, Thèse de doctorat, Université de

Technologie de Compiègne, 1991.

McClintock F.A., “A criterion for ductile fracture by the growth of holes”, J. Appl. Mech.,

vol. 35, 1968, p. 363-371.

Oyane M., Sato T., Okimoto K., Shima S., “Criteria for ductile fracture and their

applications”, J. Mech. Work. Tech., vol. 4, 1980, p. 65-81.

Rice J.R., Tracey D.M., “On the ductile enlargement of voids in triaxial stress fields”,

J. Mech. Phys. Solids, vol. 17, 1969, p. 201-217.

Taupin E., Breitling J., Wu W.T., Altan T., “Material fracture and burr formation in blanking

results of FEM simulations and comparison with experiments”, J. Mater. Proc. Techn.,

vol. 59, 1996, p. 68-78.

Wisselink H., Analysis of guillotining and slitting, finite element simulations, PhD Thesis,

University of Twente, The Netherlands, 2000.

Downloads

Published

2007-09-21

How to Cite

Lemiale, V. ., Chambert, J. ., Touache, A. ., & Picart, P. . (2007). Méthodes numériques de propagation de fissures appliquées au découpage des métaux. European Journal of Computational Mechanics, 16(6-7), 889–911. https://doi.org/10.13052/REMN.16.889-911

Issue

Section

Original Article