Un élément fini de poutre fissurée

Application à la dynamique des arbres tournants

Authors

  • Saber El Arem Laboratoire de Mécanique des Solides, CNRS (UMR 7649) Ecole Polytechnique, F-91128 Palaiseau
  • Habibou Maitournam Laboratoire de Mécanique des Solides, CNRS (UMR 7649) Ecole Polytechnique, F-91128 Palaiseau

DOI:

https://doi.org/10.13052/REMN.16.643-663

Keywords:

crack, beam, unilateral contact, finite element, rotor

Abstract

In this paper, an original method for construction of a cracked beam finite element is presented. The additional flexibility due to the cracks is identified from three-dimensional finite element calculations taking into account the unilateral contact conditions between the cracks lips. Based on this flexibility which is distributed over the entire length of the element, a new cracked finite element stiffness matrix is deduced. Considerable gain in computing efforts is reached compared to the nodal representation of the cracked section when dealing with the numerical integration of differential equations in structural dynamics.

Downloads

Download data is not yet available.

References

Abraham O. N. L., Brandon J. A., Cohen A. M., « Remark on the determination of compliance

coefficients at the crack section of a uniform beam with circular cross section », J. Sound

Vib., vol. 169, n° 2, p. 570-574, 1994.

Andrieux S., Détermination de la loi de comportement en flexion bi-axée d’une poutre fissurée

avec prise en compte du contact sur les fissures (in french), rapport interne n° HP-

/99/018/A, EDF-DER, 2000.

Andrieux S., Varé C., « A 3D cracked beam model with unilateral contact- Application to

rotors », European Journal of Mechanics, A/Solids, vol. 21, p. 793-810, 2002.

Anifantis N., Dimarogonas A. D., « Identification of peripheral cracks in cylindrical shells »,

ASME-Wint. Ann. Meet., Boston, Mass., USA, 1983.

Audebert S., Voinis P., « Comportement dynamique de rotors avec fissuration transverse : modélisation

et validation expérimentale (in french) », 13ème colloque Vib. Chocs et bruits,

Lyon, France, 2000.

Bachschmid N., Diana N., Pizzigoni B., « The influence of unbalance on cracked rotors »,

Conf.Vib.Rotat. Mach., U.K, 1980.

Bachschmid N., Pennacchi P., Tanzi E., Audebert S., « Transverse crack modeling and validationinrotor

systems including thermal effects », Int.J. of Rotat. Mach., vol. 10, n° 4,

p. 253-263, 2004.

Bachschmid N., Pennacchi P., Vania A., « Identificationof multiple faults in rotor systems »,

Journal of Sound and Vibration, vol. 254(02), p. 327-366, 2002.

Bently D., Muszynska A., « Detection of rotor cracks », 15th Turbomachinery Symposium,

Texas, 1986.

Brown F. W., Srawley J. E., « Plane strain crack toughness testing of high strength metallic

materials », ASTM STP, vol. 410, p. 12, 1966.

Bueckner H. F., « The propagation of cracks and the energy of elastic deformation », Trans.

ASME, vol. 80, p. 1225-1229, 1958.

Darpe A. K., Gupta K., Chawla A., « Transient response and breathing behaviour of a cracked

Jeffcott rotor », J. Sound Vib., vol. 272, p. 207-243, 2004.

Davies W., Mayes I., « The vibrational behaviour of multi-shaft, multi-bearing system in the

presence of the propagating transverse crack », J. Vib. Acous. Stress Reliab. Design, vol.

, p. 146-153, 1984.

Dimarogonas A. D., Dynamic response of cracked rotors, Internal report, General Electric Co.,

Schenectady NY, 1970.

Dimarogonas A. D., Dynamics of cracked shafts, Internal report, General Electric Co., Schenectady

NY, 1971.

Dimarogonas A. D., « Crack identification of in aircraft structures », First National aircraft

conf., Athens, 1982.

Dimarogonas A. D., « A fuzzy logic neutral network structured expert system shell for diagnosis

and prognosis- users manual », EXPERTS, Clayton laboratories, St Louis, Missouri,

USA, 1987.

Dimarogonas A. D., « A general purpose rotor dynamic analysis program- users manual »,

RODYNA, Clayton laboratories, St Louis, Missouri, USA, 1988.

Dimarogonas A. D., « Author’s reply », J. Sound and Vibration, vol. 169, p. 575-576, 1994.

Dimarogonas A. D., « Vibration of cracked structures : A state of the art review », Engineering

Fracture Mechanics, vol. 55, n° 5, p. 831-857, 1996.

Dimarogonas A. D., Paipetis S. A., Analytical methods in rotor dynamics, Applied science

Publishers, 1983.

Dirr B. O., Schmalhorst B. K., « Crack depth analysis of a rotating shaft by vibration measurement

», ASME J. Vib. Acous. Stres. Relia. Des., vol. 110, p. 158-164, 1988.

El Arem S., Vibrations non-lineaires des structures fissurées : application aux rotors de turbines

(in french), PhD thesis, Ecole Nationale des Ponts et Chaussées, 2006.

El Arem S., Andrieux S., Varé C., Verrier P., « Loi de comportement en flexion d’une section de

poutre fissurée avec prise en compte des effets de cisaillement (in french) », 6ème colloque

nationale en calcul des structures, vol. II, Giens, p. 223-230, 2003.

El Arem S., Nguyen Q. S., « A simple model for the dynamical behavior of a cracked rotor »,

Advances in Geomaterials and Structures, Hammamet, p. 393-398, 2006.

Entwistle R. D., Stone B. J., « Survey of the use of vibration methods in the assessment of

component geometry », Vib. and Noise Meas. Pred. and Cont., Inst. engineers, Australia,

vol. 90, p. 210-217, 1990.

Friswell M., Penny J., « Crack Modelling for Structural Health Monitoring », International

Journal of Structural Health Monitoring, vol. 1, p. 139-148, 2002.

Gasch R., « Dynamical behavior of a simple rotor with a cross-sectional crack », Vibrations in

rotating machinery, I. Mech. E. Conference, London, p. 123-128, 1976.

Gasch R., « A survey of the dynamic behavior of a simple rotating shaft with a transverse

crack », J. Sound and vibration, vol. 160, p. 313-332, 1993.

Géradin M., Rixen D., Théorie des vibrations : Application à la dynamique des structures,

Masson, Paris, 1992.

Go C. G., Lin Y. S., « Infinitely small element for dynamic problem of cracked beam », Eng.

Fract. Mech., vol. 48, n° 4, p. 475-482, 1994.

Gross B., Srawley J. E., Stress intensity factors for a single-edge-notch tension specimen by

boundary collocation of a stress function, Tech. Note n° D-2395, NASA, 1964.

Gross B., Srawley J. E., Stress intensity factors for a single-edge-notch specimen in bending or

combined bending and tension by boundary collocation of a stress function, Tech. Note n°

D-2603, NASA, 1965.

Henry T. A., Okah-Avae, « Vibrations in cracked shafts », Vibrations in rotating machinery,

Inst. Mech. E. Conference, London, p. 15-19, 1976.

Hilber H. M., Hughes T., Taylor R., « Improved numerical dissipation for time integration

algorithms in structural dynamics », Earthquake Engneering and Structural Dynamics, vol.

, p. 283-293, 1977.

Imam I., Azzaro S. H., Bankert R. J., Scheibel I., « Developement of an on-line rotor crack

detection and monitoring system », J. Sound and Vib., vol. 111, p. 241-250, 1989.

Irwin G. R., « Analysis of stresses and strains near the end of a cracktraversing a plate », J.

App. Mech., vol. 24, p. 361-364, 1957.

Jun O. S., Eun H. J., Earmme Y., Lee C., « Modelling and vibration analysis of a simple rotor

with a breathing crack », J. Sound and Vibration, vol. 155, n° 2, p. 273-290, 1992.

Lalanne M., Ferraris G., Rotordynamics Prediction in Engineering, John Wiley & Sons, England,

Liebowitz H., Claus D. W., « Carrying capacity of notched columns », Eng. Fract. Mech., vol.

, p. 379-384, 1968.

Liebowitz H., Vanderveldt H., Harris W. D., « Failure of notched columns », Int. J. Solids

Struct., vol. 3, p. 489-500, 1967.

Mayes I., Davies W., « The vibrational behaviour of a rotating shaft system containing a transverse

crack », Vibrations in rotating machinery, Inst. Mech. E. Conference, London, p. 53-

, 1976.

Mayes I., Davies W., « A method of calculating the vibrational behaviour of coupled rotating

shafts containning a transverse crack », Vibrations in rotating machinery, Inst. Mech. E.

Conference, London, p. 17-27, 1980.

Okamura H., Liu H. W., Chu C.-S., Liebowitz H., « A cracked column under compression »,

Eng. Fract. Mech., vol. 1, p. 547-564, 1969.

OstachowiczW. M., Krawwczuk M., « Vibration analysis of a cracked beam », Comput. Struct.,

vol. 36, n° 2, p. 245-250, 1990.

Ostachowicz W. M., Krawwczuk M., « Coupled torsional and bending vibrations of a rotor

with an open crack », Arch. App. Mech., vol. 62, p. 191-201, 1992.

Papadopoulos C. A., Dimarogonas A. D., « Coupled longitudinal and bending vibrations of a

rotating shaft with an open crack », J. Sound vibration, vol. 117, p. 81-93, 1987a.

Papadopoulos C. A., Dimarogonas A. D., « Coupling of bending and torsional vibration of a

cracked Timoshenko beam », Ing. Arch., vol. 57, p. 496-505, 1987b.

Papadopoulos C. A., Dimarogonas A. D., « Stability of cracked rotors in the coupled vibration

mode », ASME-11th Bien. Conf. Mech. Vib. Noise, Boston, Mass., USA, p. 25-34, 1987c.

Rice J. R., Levy N., « The part-through surface crack in an elastic plate », J. App. Mech., vol.

, p. 185-194, 1972.

Saavedra P. N., Cuitino L. A., « Crack detection and vibrational behavior of cracked beams »,

Comput. Struct., vol. 79, p. 1451-1459, 2001.

Sinou J. J., Lees A. W., « The influence of cracks in rotating shafts », J. Sound Vib., vol. 285,

p. 1015-1037, 2005.

Sinou J. J., Lees A. W., « A non-linear study of a cracked rotor », European Journal of

Mechanics- A/Solids, vol. 26, p. 152-170, 2007.

Tada H., Paris P., Irwin G., The stress analysis of cracks handbook, Del Research Corporation,

Hellertown, pennsylvania, USA, 1973.

Varé C., Andrieux S., « Modélisation d’une section de poutre fissurée-Application aux rotors

de turbine », Revue Française de Mécanique, vol. 2000, n° 2, p. 91-97, 2000.

Verrier P., El Arem S., Calcul d’un modèle de rotor fissuré avec prise en compte de l’effort

tranchant-cas de la flexion plane (in french), rapport interne n° HT-65/03/009/A, EDF-DER,

Wauer J., « On the dynamics of cracked rotors : A literature survey », Applied Mechanical

Reviews, vol. 43, n° 1, p. 13-17, 1990.

Westmann R. A., Yang W. H., « Stress analysis of cracked rectangular beams », J. APP. Mech.,

vol. 32, p. 639-701, 1967.

Zuo L., Etude du comportement dynamique des systèmes linéaires par morceaux- contribution

à la détection des fissures dans les arbres de machines tournantes, PhD thesis, EPFL, 1992.

Zuo L., Curnier A., « Nonlinear real and complex modes of conewise linear systems », J. Sound

and Vib., vol. 174, n° 3, p. 289-313, 1994.

Downloads

Published

2007-08-16

How to Cite

Arem, S. E., & Maitournam, H. . (2007). Un élément fini de poutre fissurée: Application à la dynamique des arbres tournants. European Journal of Computational Mechanics, 16(5), 643–663. https://doi.org/10.13052/REMN.16.643-663

Issue

Section

Original Article