Explicit finite element method for in-vivo mechanics of abdominal aortic aneurysm
DOI:
https://doi.org/10.13052/REMN.16.337-363Keywords:
explicit method, abdominal aortic aneurysm, computational, fluid structure interactionAbstract
In this paper we present a strongly-coupled, dynamic, fluid structure interaction analysis of the abdominal aorta in the presence of aneurysm, using an explicit finite element method. All dominating features of the biological system under study were taken into account, including blood dynamics and wall mechanics and the interaction between the two. The inclusion of the surrounding organs and structures that are in contact with the infra-renal aortic segment added physiological realism to the simulation and proved to be a good approach to integrate the interaction of the aorta with its environment. A similar solution strategy could be advantageous to the study of other cardiovascular structures that require a strong coupling among fluid, solid and surrounding entity behaviors.
Downloads
References
Ailawadi G., Eliason J. L., Upchurch G. R. Jr., “Current concepts in the pathogenesis of
abdominal aortic aneurysm”, J Vasc Surg., vol. 38, n° 3, 2003, p. 584-588.
Bluestein D., Niu L., Schoephoerster R. T., Dewanjee M. K., “Steady flow in an aneurysm
model: correlation between fluid dynamics and blood platelet deposition”, J Biomech
Eng, vol. 118, n° 3, 1996, p. 280-286.
Brown J., Rosen J., Sinanan M., Hannaford B., “In-vivo and postmortem compressive
properties of porcine abdominal organs”, Lecture notes in Computer Science, vol. 2878,
, p. 238-245.
Carew T. E., Vaishnav R. N., D.J. P., “Compressibility of the arterial wall”, Circulation
Research, vol. 23, 1968, p. 61-68.
Chuong C. J., Fung Y. C., “Compressibility and constitutive equation of arterial wall in
radial compression experiments”, J Biomech, vol. 17, n° 1, 1984, p. 35-40.
Curci J. A., Liao S., Huffman M. D., Shapiro S. D., Thompson R. W., “Expression and
localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic
aneurysms”, J Clin Invest, vol. 102, n° 11, 1998, p. 1900-1910.
Di Martino E., Mantero S., Inzoli F., Melissano G., Astore D., Chiesa R., Fumero R.,
“Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus:
experimental characterisation and structural static computational analysis”, European
Journal of Vascular & Endovascular Surgery, vol. 15, n° 4, 1998, p. 290-299.
Di Martino E. S., Guadagni G., Fumero A., Ballerini G., Spirito R., Biglioli P. and
Redaelli, A., “Fluid-structure interaction within realistic three-dimensional models of the
aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm”, Medical
Engineering & Physics, vol. 23, n° 9, 2001, p. 647-655.
Di Martino E. S., Vorp D. A., “Effect of variation in intraluminal thrombus constitutive
properties on abdominal aortic aneurysm wall stress”, Ann Biomed Eng, vol. 31, n° 7,
, p. 804-809.
Di Martino E. S., Yamakawa S., Shimada K. and Vorp D., “Requirements for mesh size and
mesh type in non linear computational finite element method structural analyses”,
Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, MA,
, Cambridge, MA, MIT.
Fillinger M. F., Raghavan M. L., Marra S. P., Cronenwett J. L. and Kennedy F. E., “In vivo
analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk”, Journal
of Vascular Surgery, vol. 36, n° 3, 2002, p. 589-597.
Fung Y. C., Biomechanics –Mechanical Properties of Living tissue, Springer, 1993.
Gruneisen E., Handbuck der Physic, vol. 10, n° 22, Berlin, Springer, 1926.
Hallquist J., LS-DYNA Theoretical manual, Livermore, CA, Livermore Software
Corporation, 1999.
Harter L. P., “Ultrasonic evaluation of abdominal aortic thrombus”, J. Ultra. Med, vol. 1,
, p. 315-318.
Huffman M. D., Curci J. A., Moore G., Kerns D. B., Starcher B. C., Thompson R. W.,
“Functional importance of connective tissue repair during the development of
experimental abdominal aortic aneurysms”, Surgery, vol. 128, n° 3, 2000, p. 429-38.
Mills C., Gabe I., Gault J., Mason D., Ross J. J., Brunwald E. and Shillingford J., “Pressureflow
Relationships and Vascular Impedance in Man”, Cardiovasc. Res., vol. 4, 1970,
p. 405-417.
Mower W. R., Quinones W. J. and Gambhir S. S., “Effect of intraluminal thrombus on
abdominal aortic aneurysm wall stress”, J Vas Surg, vol. 26, 1997, p. 602-608.
Nakamura N., Wada S., Yokosawa S., Isoda H., Tsubota K. and Yamaguchi T., “Flow in an
integrated model of the heart and aorta”, XXI Ineternational Conference of Theoretical
and Applied Mechanics, Warsaw, 2004. Springer Verlag.
Peattie R. A., Riehle T. J., Bluth E. I., “Pulsatile flow in fusiform models of abdoiminal
aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses”,
J Biomech Eng, vol. 126, n° 4, 2004, p. 438-446.
Raghavan M. L., Vorp D. A., “Toward a biomechanical tool to evaluate rupture potential of
abdominal aortic aneurysm: identification of a finite strain constitutive model and
evaluation of its applicability”, Journal of Biomechanics, vol. 33, 2000, p. 475-482.
Raghavan M. L., Vorp D. A., Federle M. P., Makaroun M. S. and Webster M. W., “Wall
stress distribution on three-dimensionally reconstructed models of human abdominal
aortic aneurysm”, Journal of Vascular Surgery, vol. 31, n° 4, 2000, p. 760-769.
Redaelli A., Rizzo G., Arrigoni S., Di Martino E., Origgi D., Fazio F. and Montevecchi F.,
“An assisted automated procedure for vessel geometry reconstruction and hemodynamic
simulations from clinical imaging”, Comput Med Imaging Graph, vol. 26, n° 3, 2002,
p. 143-52.
Reilly D. T. and Burstein A. H., “The elastic and ultimate properties of compact bone
tissue”, Journal of Biomechanics, vol. 8, 1975, p. 393-405.
Schmid P., Stuber M., Boesiger P., Hess O. M. and Niederer P., “Determination of
displacement, stress- and strain-distribution in the human heart: a FE-model on the basis
of MR imaging”, Technol Health Care, vol. 3, n° 3, 1995, p. 209-214.
Smith D., Sacks M., Vorp D. and Thornton M., “Surface geometric analysis of anatomic
structures using biquintic finite element interpolation”, Ann Biomed Eng, vol. 28, n° 6,
, p. 598-611.
Steinman D. A., Vorp D. A. and Ethier C. R., “Computational modeling of arterial
biomechanics: insights into pathogenesis and treatment of vascular disease”, Journal of
Vascular Surgery, vol. 37, n° 5, 2003, p. 1118-1128.
Vande Geest J. P., Sacks M. S. and Vorp D. A., “Age dependency of the biaxial
biomechanical behavior of human abdominal aorta”, J Biomech Eng, vol. 126, n° 6,
, p. 815-822.
Vande Geest J. P., Sacks M. S. and Vorp D. A., “The effects of aneurysm on the biaxial
mechanical behavior of human abdominal aorta”, J Biomech, in press 2005 (available
on-line).
Vorp D. A., Raghavan M. L., Muluk S. C., Makaroun M. S., Steed D. L., Webster M W.,
“Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta”, Ann.
NY Acad. Sci, vol. 800, 1996, p. 274-277.
Vorp D. A., Raghavan M. L. and Webster M. W., “Mechanical wall stress in abdominal
aortic aneurysm: Influence of diameter and asymmetry”, Journal of Vascular Surgery,
vol. 27, n° 4, 1998, p. 27.
Wang D. H., Makaroun M., Webster M. W., Vorp, D. A., “Mechanical properties and
microstructure of intraluminal thrombus from abdominal aortic aneurysm”, Journal of
Biomechanical Engineering, vol. 123, n° 6, 2001, p. 536-539.
Wang D. H., Makaroun M. S., Webster M. W. and Vorp D. A., “Effect of intraluminal
thrombus on wall stress in patient-specific models of abdominal aortic aneurysm”,
Journal of Vascular Surgery, vol. 36, n° 3, 2002, p. 598-604.
Wolters B. J., Rutten M. C., Schurink G. W., Kose U., de Hart J., van de Vosse F. N., “A
patient-specific computational model of fluid-structure interaction in abdominal aortic
aneurysms”, Med Eng Phys, vol. 27, n° 10, 2005, p. 871-883.
Woodruff L. W., University of California Report UCRL 50621, 1969.