Explicit finite element method for in-vivo mechanics of abdominal aortic aneurysm

Authors

  • Michelle D. Gasbarro Biomedical Engineering Department, Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA, 15213, USA and MDG Solutions, INC. Pittsburgh, PA, 15217, USA
  • Kenji Shimada Mechanical Engineering, Biomedical Engineering Departments and Institute for Complex Engineered Systems, Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
  • Elena S. Di Martino Biomedical Engineering Department and Institute for Complex Engineered Systems, Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA, 15213, USA

DOI:

https://doi.org/10.13052/REMN.16.337-363

Keywords:

explicit method, abdominal aortic aneurysm, computational, fluid structure interaction

Abstract

In this paper we present a strongly-coupled, dynamic, fluid structure interaction analysis of the abdominal aorta in the presence of aneurysm, using an explicit finite element method. All dominating features of the biological system under study were taken into account, including blood dynamics and wall mechanics and the interaction between the two. The inclusion of the surrounding organs and structures that are in contact with the infra-renal aortic segment added physiological realism to the simulation and proved to be a good approach to integrate the interaction of the aorta with its environment. A similar solution strategy could be advantageous to the study of other cardiovascular structures that require a strong coupling among fluid, solid and surrounding entity behaviors.

Downloads

Download data is not yet available.

References

Ailawadi G., Eliason J. L., Upchurch G. R. Jr., “Current concepts in the pathogenesis of

abdominal aortic aneurysm”, J Vasc Surg., vol. 38, n° 3, 2003, p. 584-588.

Bluestein D., Niu L., Schoephoerster R. T., Dewanjee M. K., “Steady flow in an aneurysm

model: correlation between fluid dynamics and blood platelet deposition”, J Biomech

Eng, vol. 118, n° 3, 1996, p. 280-286.

Brown J., Rosen J., Sinanan M., Hannaford B., “In-vivo and postmortem compressive

properties of porcine abdominal organs”, Lecture notes in Computer Science, vol. 2878,

, p. 238-245.

Carew T. E., Vaishnav R. N., D.J. P., “Compressibility of the arterial wall”, Circulation

Research, vol. 23, 1968, p. 61-68.

Chuong C. J., Fung Y. C., “Compressibility and constitutive equation of arterial wall in

radial compression experiments”, J Biomech, vol. 17, n° 1, 1984, p. 35-40.

Curci J. A., Liao S., Huffman M. D., Shapiro S. D., Thompson R. W., “Expression and

localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic

aneurysms”, J Clin Invest, vol. 102, n° 11, 1998, p. 1900-1910.

Di Martino E., Mantero S., Inzoli F., Melissano G., Astore D., Chiesa R., Fumero R.,

“Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus:

experimental characterisation and structural static computational analysis”, European

Journal of Vascular & Endovascular Surgery, vol. 15, n° 4, 1998, p. 290-299.

Di Martino E. S., Guadagni G., Fumero A., Ballerini G., Spirito R., Biglioli P. and

Redaelli, A., “Fluid-structure interaction within realistic three-dimensional models of the

aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm”, Medical

Engineering & Physics, vol. 23, n° 9, 2001, p. 647-655.

Di Martino E. S., Vorp D. A., “Effect of variation in intraluminal thrombus constitutive

properties on abdominal aortic aneurysm wall stress”, Ann Biomed Eng, vol. 31, n° 7,

, p. 804-809.

Di Martino E. S., Yamakawa S., Shimada K. and Vorp D., “Requirements for mesh size and

mesh type in non linear computational finite element method structural analyses”,

Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, MA,

, Cambridge, MA, MIT.

Fillinger M. F., Raghavan M. L., Marra S. P., Cronenwett J. L. and Kennedy F. E., “In vivo

analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk”, Journal

of Vascular Surgery, vol. 36, n° 3, 2002, p. 589-597.

Fung Y. C., Biomechanics –Mechanical Properties of Living tissue, Springer, 1993.

Gruneisen E., Handbuck der Physic, vol. 10, n° 22, Berlin, Springer, 1926.

Hallquist J., LS-DYNA Theoretical manual, Livermore, CA, Livermore Software

Corporation, 1999.

Harter L. P., “Ultrasonic evaluation of abdominal aortic thrombus”, J. Ultra. Med, vol. 1,

, p. 315-318.

Huffman M. D., Curci J. A., Moore G., Kerns D. B., Starcher B. C., Thompson R. W.,

“Functional importance of connective tissue repair during the development of

experimental abdominal aortic aneurysms”, Surgery, vol. 128, n° 3, 2000, p. 429-38.

Mills C., Gabe I., Gault J., Mason D., Ross J. J., Brunwald E. and Shillingford J., “Pressureflow

Relationships and Vascular Impedance in Man”, Cardiovasc. Res., vol. 4, 1970,

p. 405-417.

Mower W. R., Quinones W. J. and Gambhir S. S., “Effect of intraluminal thrombus on

abdominal aortic aneurysm wall stress”, J Vas Surg, vol. 26, 1997, p. 602-608.

Nakamura N., Wada S., Yokosawa S., Isoda H., Tsubota K. and Yamaguchi T., “Flow in an

integrated model of the heart and aorta”, XXI Ineternational Conference of Theoretical

and Applied Mechanics, Warsaw, 2004. Springer Verlag.

Peattie R. A., Riehle T. J., Bluth E. I., “Pulsatile flow in fusiform models of abdoiminal

aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses”,

J Biomech Eng, vol. 126, n° 4, 2004, p. 438-446.

Raghavan M. L., Vorp D. A., “Toward a biomechanical tool to evaluate rupture potential of

abdominal aortic aneurysm: identification of a finite strain constitutive model and

evaluation of its applicability”, Journal of Biomechanics, vol. 33, 2000, p. 475-482.

Raghavan M. L., Vorp D. A., Federle M. P., Makaroun M. S. and Webster M. W., “Wall

stress distribution on three-dimensionally reconstructed models of human abdominal

aortic aneurysm”, Journal of Vascular Surgery, vol. 31, n° 4, 2000, p. 760-769.

Redaelli A., Rizzo G., Arrigoni S., Di Martino E., Origgi D., Fazio F. and Montevecchi F.,

“An assisted automated procedure for vessel geometry reconstruction and hemodynamic

simulations from clinical imaging”, Comput Med Imaging Graph, vol. 26, n° 3, 2002,

p. 143-52.

Reilly D. T. and Burstein A. H., “The elastic and ultimate properties of compact bone

tissue”, Journal of Biomechanics, vol. 8, 1975, p. 393-405.

Schmid P., Stuber M., Boesiger P., Hess O. M. and Niederer P., “Determination of

displacement, stress- and strain-distribution in the human heart: a FE-model on the basis

of MR imaging”, Technol Health Care, vol. 3, n° 3, 1995, p. 209-214.

Smith D., Sacks M., Vorp D. and Thornton M., “Surface geometric analysis of anatomic

structures using biquintic finite element interpolation”, Ann Biomed Eng, vol. 28, n° 6,

, p. 598-611.

Steinman D. A., Vorp D. A. and Ethier C. R., “Computational modeling of arterial

biomechanics: insights into pathogenesis and treatment of vascular disease”, Journal of

Vascular Surgery, vol. 37, n° 5, 2003, p. 1118-1128.

Vande Geest J. P., Sacks M. S. and Vorp D. A., “Age dependency of the biaxial

biomechanical behavior of human abdominal aorta”, J Biomech Eng, vol. 126, n° 6,

, p. 815-822.

Vande Geest J. P., Sacks M. S. and Vorp D. A., “The effects of aneurysm on the biaxial

mechanical behavior of human abdominal aorta”, J Biomech, in press 2005 (available

on-line).

Vorp D. A., Raghavan M. L., Muluk S. C., Makaroun M. S., Steed D. L., Webster M W.,

“Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta”, Ann.

NY Acad. Sci, vol. 800, 1996, p. 274-277.

Vorp D. A., Raghavan M. L. and Webster M. W., “Mechanical wall stress in abdominal

aortic aneurysm: Influence of diameter and asymmetry”, Journal of Vascular Surgery,

vol. 27, n° 4, 1998, p. 27.

Wang D. H., Makaroun M., Webster M. W., Vorp, D. A., “Mechanical properties and

microstructure of intraluminal thrombus from abdominal aortic aneurysm”, Journal of

Biomechanical Engineering, vol. 123, n° 6, 2001, p. 536-539.

Wang D. H., Makaroun M. S., Webster M. W. and Vorp D. A., “Effect of intraluminal

thrombus on wall stress in patient-specific models of abdominal aortic aneurysm”,

Journal of Vascular Surgery, vol. 36, n° 3, 2002, p. 598-604.

Wolters B. J., Rutten M. C., Schurink G. W., Kose U., de Hart J., van de Vosse F. N., “A

patient-specific computational model of fluid-structure interaction in abdominal aortic

aneurysms”, Med Eng Phys, vol. 27, n° 10, 2005, p. 871-883.

Woodruff L. W., University of California Report UCRL 50621, 1969.

Downloads

Published

2007-09-27

How to Cite

Gasbarro, M. D. ., Shimada, K. ., & Martino, E. S. D. . (2007). Explicit finite element method for in-vivo mechanics of abdominal aortic aneurysm. European Journal of Computational Mechanics, 16(3-4), 337–363. https://doi.org/10.13052/REMN.16.337-363

Issue

Section

Original Article