Porous parachute modelling with an Euler-Lagrange coupling

Authors

  • Nicolas Aquelet Livermore Software Technology Corporation 7374 Las Positas Road, Livermore, CA 94550, USA
  • Jason Wang Livermore Software Technology Corporation 7374 Las Positas Road, Livermore, CA 94550, USA

DOI:

https://doi.org/10.13052/REMN.16.385-399

Keywords:

parachute, porous canopy, Euler-Lagrange coupling, ALE formulation, Ergun equation

Abstract

A newly developed approach for tridimensional fluid-structure interaction with a deformable thin porous media is presented. The method presented couples a Arbitrary Lagrange Euler formulation for the fluid dynamics and a updated Lagrangian finite element formulation for the thin porous medium dynamics. The interaction between the fluid and porous medium are handled by a Euler-Lagrange coupling, for which the fluid and structure meshes are superimposed without matching. The coupling force is computed with an Ergun porous flow model. As test case, the method is applied to an anchored air parachute placed in an air stream.

Downloads

Download data is not yet available.

References

Air Force Flight Dynamics Laboratory Technical Report (AFFDL-TR-78-151), Recovery

Systems Design Guide, June 1978.

Bear J., Dynamics of fluids in porous media, Dover, New York, 1972.

Belytschko T., Lin J., Tsay C.S., “Explicit algorithms for nonlinear dynamics of shells”,

Comp. Meth. Appl. Mech. Engrg., vol. 42, 1984, p. 225-251.

Belytschko T., Liu W.K., Moran B., Nonlinear Finite Elements for Continua and Structures,

John Wiley & Sons, LTD, 2001.

Benson D.J., “Computational methods in Lagrangian and Eulerian hydrocodes”, Comp. Meth.

Appl. Mech. Engrg., vol. 99, n° 2, 1992, p. 235-394.

Bensoussan A., Lions J.L., Papanicolaou G., “Asymptotic analysis for periodic structures”,

Studies in Mathematics and Its Applications, vol. 5, North-Holland, Amsterdam, 1978.

Biot M.A., “General theory of three dimensional consolidation”, J. Appl. Phys., vol. 12, 1941,

p. 155-164.

Cruz J. R., Mineck R. E., Keller D. F., Bobskill M. V., “Wind Tunnel Testing of Various

Disk-Gap-Band Parachutes”, 17th AIAA Aerodynamic Decelerator Systems Technology

Conference and Seminar, AIAA 2003-2129, May 19-22, 2003 Monterey, California.

Ergun S., “Fluid flow through packed beds”, Chem. Eng. Prog., vol. 48, n° 2, 1952, p. 89-94.

Hughes T.J.R., Liu W.K., Zimmerman T.K., “Lagrangian Eulerian finite element formulation

for viscous flows”, Comp. Meth. Appl. Mech. Engrg., vol. 21, 1981a, p. 329-349.

Hughes T.J.R., Liu W. K., “Nonlinear Finite Element Analysis: Part I. Two-Dimensional

Shells”, Comp. Meth. Appl. Mech. Engrg., Vol. 27, 1981b, p. 167-181.

Mei C.C., Auriault J.-L., “Mechanics of heterogeneous porous media with several spatial

scalesé”, Proc. Roy. Soc. Lond., Vol. A 426, 1989, p. 391-423.

Sanchez-Palencia E., “Non-homogeneous media and vibration theory”, Lecture Notes in

Physics, vol. 127, Springer-Verlag, Berlin, 1981.

Souli M., Ouahsine A., Lewin L., “ALE and Fluid-Structure Interaction problems”, Comp.

Meth. Appl. Mech. Engrg., vol. 190, 2000, p. 659-675.

Van Leer B., “Towards the Ultimate Conservative Difference Scheme.IV. A New Approach

to Numerical Convection”, Journal Computational Physics, vol. 167, 1977, p. 276-299.

Zhikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of differential operators and

integral functionals, Springer-Verlag, Berlin, 1994.

Downloads

Published

2007-09-21

How to Cite

Aquelet, N. ., & Wang, J. . (2007). Porous parachute modelling with an Euler-Lagrange coupling. European Journal of Computational Mechanics, 16(3-4), 385–399. https://doi.org/10.13052/REMN.16.385-399

Issue

Section

Original Article

Most read articles by the same author(s)