Porous parachute modelling with an Euler-Lagrange coupling
DOI:
https://doi.org/10.13052/REMN.16.385-399Keywords:
parachute, porous canopy, Euler-Lagrange coupling, ALE formulation, Ergun equationAbstract
A newly developed approach for tridimensional fluid-structure interaction with a deformable thin porous media is presented. The method presented couples a Arbitrary Lagrange Euler formulation for the fluid dynamics and a updated Lagrangian finite element formulation for the thin porous medium dynamics. The interaction between the fluid and porous medium are handled by a Euler-Lagrange coupling, for which the fluid and structure meshes are superimposed without matching. The coupling force is computed with an Ergun porous flow model. As test case, the method is applied to an anchored air parachute placed in an air stream.
Downloads
References
Air Force Flight Dynamics Laboratory Technical Report (AFFDL-TR-78-151), Recovery
Systems Design Guide, June 1978.
Bear J., Dynamics of fluids in porous media, Dover, New York, 1972.
Belytschko T., Lin J., Tsay C.S., “Explicit algorithms for nonlinear dynamics of shells”,
Comp. Meth. Appl. Mech. Engrg., vol. 42, 1984, p. 225-251.
Belytschko T., Liu W.K., Moran B., Nonlinear Finite Elements for Continua and Structures,
John Wiley & Sons, LTD, 2001.
Benson D.J., “Computational methods in Lagrangian and Eulerian hydrocodes”, Comp. Meth.
Appl. Mech. Engrg., vol. 99, n° 2, 1992, p. 235-394.
Bensoussan A., Lions J.L., Papanicolaou G., “Asymptotic analysis for periodic structures”,
Studies in Mathematics and Its Applications, vol. 5, North-Holland, Amsterdam, 1978.
Biot M.A., “General theory of three dimensional consolidation”, J. Appl. Phys., vol. 12, 1941,
p. 155-164.
Cruz J. R., Mineck R. E., Keller D. F., Bobskill M. V., “Wind Tunnel Testing of Various
Disk-Gap-Band Parachutes”, 17th AIAA Aerodynamic Decelerator Systems Technology
Conference and Seminar, AIAA 2003-2129, May 19-22, 2003 Monterey, California.
Ergun S., “Fluid flow through packed beds”, Chem. Eng. Prog., vol. 48, n° 2, 1952, p. 89-94.
Hughes T.J.R., Liu W.K., Zimmerman T.K., “Lagrangian Eulerian finite element formulation
for viscous flows”, Comp. Meth. Appl. Mech. Engrg., vol. 21, 1981a, p. 329-349.
Hughes T.J.R., Liu W. K., “Nonlinear Finite Element Analysis: Part I. Two-Dimensional
Shells”, Comp. Meth. Appl. Mech. Engrg., Vol. 27, 1981b, p. 167-181.
Mei C.C., Auriault J.-L., “Mechanics of heterogeneous porous media with several spatial
scalesé”, Proc. Roy. Soc. Lond., Vol. A 426, 1989, p. 391-423.
Sanchez-Palencia E., “Non-homogeneous media and vibration theory”, Lecture Notes in
Physics, vol. 127, Springer-Verlag, Berlin, 1981.
Souli M., Ouahsine A., Lewin L., “ALE and Fluid-Structure Interaction problems”, Comp.
Meth. Appl. Mech. Engrg., vol. 190, 2000, p. 659-675.
Van Leer B., “Towards the Ultimate Conservative Difference Scheme.IV. A New Approach
to Numerical Convection”, Journal Computational Physics, vol. 167, 1977, p. 276-299.
Zhikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of differential operators and
integral functionals, Springer-Verlag, Berlin, 1994.