Strong coupling for fluid structure interaction problems

Authors

  • Nicolas Capron Laboratoire de Mécanique de Lille LML UMR 8107 Université des Sciences et Technologies de Lille/CNRS Avenue Paul Langevin, F-59655 Lille
  • Gilmar Mompean Laboratoire de Mécanique de Lille LML UMR 8107 Université des Sciences et Technologies de Lille/CNRS Avenue Paul Langevin, F-59655 Lille and Ecole Universitaire Polytechnique de Lille Avenue Paul Langevin, F-59655 Lille
  • Hassan Naji Laboratoire de Mécanique de Lille LML UMR 8107 Université des Sciences et Technologies de Lille/CNRS Avenue Paul Langevin, F-59655 Lille and Ecole Universitaire Polytechnique de Lille Avenue Paul Langevin, F-59655 Lille

DOI:

https://doi.org/10.13052/REMN.16.477-490

Keywords:

fluid structure interaction, projection method, ALE

Abstract

The computation of fluid forces acting on a rigid or deformable structure constitutes a major problem in fluid structure interaction. However, the majority of numerical tests consists in using two different codes to separately solve pressure of the fluid and structural displacements. In this paper, a monolithic with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The projection method proposed by Gresho is used to decouple the velocity and pressure.

Downloads

Download data is not yet available.

References

Amsden A. A., Ruppel H. M., Hirt C. W., SALE – a simplified ALE computer program for

fluid flow at all speeds, Report, Los Alamos National Laboratory, 1980.

Belytscho T., Liu W. K., Moran B., Nonlinear finite elements for continua and structures,

Wiley, Chichester, 2000.

Bendjeddou Z., Méthodologie pour la simulation numérique des vibrations induites par

écoulements dans les faisceaux de tubes, Thèse de doctorat, Université de Lille 1, 2005.

Benson D.J., “Lagrangian and Eulerian hydrocodes”, Comput. Methods Appl. Mech. Eng, 99,

, p. 235-394.

Cho J.R., Lee S.Y., “Dynamic analysis of baffled fule-storage tanks using the ALE finite

element method”, Int. Journ. Num. Meth. Fluids, 41, 2003, p. 185-208.

Chorin A.J., “Numerical solution of the Navier-Stokes equations”, Math. Comp., 22, 1968,

p. 745-768.

Gresho P.M., “On the theory of semi-implicit projection methods for viscous incompressible

flow and its implementation via a finite element method that also introduces a nearly

consistent mass matrix. Part 1: theory”, Int. Journ. Num. Meth. Fluids, 11, 1990, p. 587-620.

Hallquist J.O., Theorical manual for LS-DYNA, Livermore Software Technology

Corporation, Livermore, 1998.

Heinrich J.C., Huyakorn P.S., Zienkiewicz O.C., Mitchel A.R., “An upwind finite element for

two-dimensional convective transport equations”, Int. Journ. Num. Meth. Eng., 11, 1977,

p. 131-143.

Heinrich J.C., Zienkiewicz O.C., “Quadratic finite element schemes for two-dimensional

convective transport problems”, Int. Journ. Num. Meth. Eng., 11, 1977, p. 1831-1844.

Hughes T.J.R., Liu W.K., Zimmerman T.K., “Lagrangian Eulerian finite element formulation

for viscous flows”, Comp. Meth. in Applied Mech. and Eng., 29, 1981, p. 329-349.

Longatte E., Bendjeddou Z., Souli M., “Application of arbitrary Lagrange Euler formulations

to flow-induced vibration problems”, ASME J. Pressure Vessel Technol., 125, 2003,

p. 411-417.

Medic G., Mohammadi B., NSIKE – an incompressible Navier-Stokes solver for unstructured

meshes, Research report No. 3644, march 1999, INRIA.

Temam R., Navier-Stokes equations, North-Holland, Amsterdam, 1984.

Downloads

Published

2007-08-31

How to Cite

Capron, N., Mompean, G. ., & Naji, H. . (2007). Strong coupling for fluid structure interaction problems. European Journal of Computational Mechanics, 16(3-4), 477 – 490. https://doi.org/10.13052/REMN.16.477-490

Issue

Section

Original Article