Strong coupling for fluid structure interaction problems
DOI:
https://doi.org/10.13052/REMN.16.477-490Keywords:
fluid structure interaction, projection method, ALEAbstract
The computation of fluid forces acting on a rigid or deformable structure constitutes a major problem in fluid structure interaction. However, the majority of numerical tests consists in using two different codes to separately solve pressure of the fluid and structural displacements. In this paper, a monolithic with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The projection method proposed by Gresho is used to decouple the velocity and pressure.
Downloads
References
Amsden A. A., Ruppel H. M., Hirt C. W., SALE – a simplified ALE computer program for
fluid flow at all speeds, Report, Los Alamos National Laboratory, 1980.
Belytscho T., Liu W. K., Moran B., Nonlinear finite elements for continua and structures,
Wiley, Chichester, 2000.
Bendjeddou Z., Méthodologie pour la simulation numérique des vibrations induites par
écoulements dans les faisceaux de tubes, Thèse de doctorat, Université de Lille 1, 2005.
Benson D.J., “Lagrangian and Eulerian hydrocodes”, Comput. Methods Appl. Mech. Eng, 99,
, p. 235-394.
Cho J.R., Lee S.Y., “Dynamic analysis of baffled fule-storage tanks using the ALE finite
element method”, Int. Journ. Num. Meth. Fluids, 41, 2003, p. 185-208.
Chorin A.J., “Numerical solution of the Navier-Stokes equations”, Math. Comp., 22, 1968,
p. 745-768.
Gresho P.M., “On the theory of semi-implicit projection methods for viscous incompressible
flow and its implementation via a finite element method that also introduces a nearly
consistent mass matrix. Part 1: theory”, Int. Journ. Num. Meth. Fluids, 11, 1990, p. 587-620.
Hallquist J.O., Theorical manual for LS-DYNA, Livermore Software Technology
Corporation, Livermore, 1998.
Heinrich J.C., Huyakorn P.S., Zienkiewicz O.C., Mitchel A.R., “An upwind finite element for
two-dimensional convective transport equations”, Int. Journ. Num. Meth. Eng., 11, 1977,
p. 131-143.
Heinrich J.C., Zienkiewicz O.C., “Quadratic finite element schemes for two-dimensional
convective transport problems”, Int. Journ. Num. Meth. Eng., 11, 1977, p. 1831-1844.
Hughes T.J.R., Liu W.K., Zimmerman T.K., “Lagrangian Eulerian finite element formulation
for viscous flows”, Comp. Meth. in Applied Mech. and Eng., 29, 1981, p. 329-349.
Longatte E., Bendjeddou Z., Souli M., “Application of arbitrary Lagrange Euler formulations
to flow-induced vibration problems”, ASME J. Pressure Vessel Technol., 125, 2003,
p. 411-417.
Medic G., Mohammadi B., NSIKE – an incompressible Navier-Stokes solver for unstructured
meshes, Research report No. 3644, march 1999, INRIA.
Temam R., Navier-Stokes equations, North-Holland, Amsterdam, 1984.