A new fluid structure coupling
Application to parachute modelling
DOI:
https://doi.org/10.13052/REMN.16.521-536Keywords:
parachute, permeability, penalty Euler-Lagrange coupling, porous coupling, ALE formulation, Ergun EquationAbstract
The modelling of parachutes at Irvin Aerospace Inc. was based on the penalty Euler-Lagrange coupling method to compute the interaction between an Arbitrary Lagrange Euler formulation for the air flow and an updated Lagrangian finite element formulation for the canopy dynamics. This approach did not permit the effect of fabric porosity to be accounted for. In this paper, a new porosity Euler-Lagrange coupling models the fabric permeability by assessing the interaction forces based on the Ergun porous flow model. This paper provides validations for the technique when considering parachute applications and discusses the interest of this development to the parachute designer.
Downloads
References
Air Force Flight Dynamics Laboratory, Technical Report (AFFDL-TR-78-151), Recovery
Systems Design Guide, June 1978.
Aquelet N., Souli M., Olovsson L., “Euler Lagrange Coupling with Damping Effects:
Application to Slamming Problem”, Comput. Methods Appl. Mech. Engrg., 2005,
CMA5874, vol. 195, n° 1-3, p. 110-132.
Belytschko T., Lin J., Tsay C.S., “Explicit algorithms for nonlinear dynamics of shells”,
Comp. Meth. Appl. Mech. Engrg., vol. 42, 1984, p. 225-251.
Belytschko T., Liu W.K., Moran B., Nonlinear Finite Elements for Continua and Structures,
John Wiley & Sons, LTD, 2001.
Belytschko T., Neal M.O., “Contact-impact by the pinball algorithm with penalty, projection,
and Lagrangian methods”, Proc. Symp. on Computational Techniques for Impact,
Penetration, and Performation of Solids, ASME, New York, AMD-vol. 103, 1989, p. 97-
Benson D., “Eulerian-Lagrangian Coupling in Finite Element calculations with applications to
machining”, Emerging Technology in Fluids, Structures, and Fluid-Structure Interactions -
, vol. 2, July 25-29 2004, San Diego, California USA, PVP-vol. 485-2.
Benson D.J., “Computational methods in Lagrangian and Eulerian hydrocodes”, Comp. Meth.
Appl. Mech. Engrg., vol. 99, n° 2, 1992, p. 235-394.
Ergun S., “Fluid flow through packed beds”, Chem. Eng. Prog., vol. 48, n° 2, 1952, p. 89-94.
Hughes T.J.R., Liu W.K., Zimmerman T.K., “Lagrangian Eulerian finite element formulation
for viscous flows”, Comp. Meth. Appl. Mech. Engrg., vol. 21, 1981, p. 329-349.
Souli M., Ouahsine A., Lewin L., “ALE and Fluid-Structure Interaction problems”, Comp.
Meth. Appl. Mech. Engrg., vol. 190, 2000, p. 659-675.
Spahr H.R., Wolf D.E., “Theoretical analysis of wake-induced parachute collapse”, 7th AIAA
Aerodyn. Decelerator and Balloon Technol. Conf., 1981, p. 81-1922.
Tutt B., “The use of LS-DYNA to Assess the Performance of Airborne Systems North
America Candidate ATPS Main Parachutes”, AIAA Aerodynamic Decelerator Systems
Conference, 2005.
Van Leer B., “Towards the Ultimate Conservative Difference Scheme.IV. A New Approach
to Numerical Convection”, Journal Computational Physics, vol. 167, 1977, p. 276-299.