An enriched finite element approach for prescribed motions of thin immersed structures in a fluid
Keywords:
fluide-structure interaction, Euler-Lagrange, thin immersed structures, large displacements, incompatible and overlapped meshes, enrichment (X-FEM), fractional time schemeAbstract
An Eulerian-Lagrangian fluid-structure coupling approach is presented. The method is dedicated when several thin structures are immersed in a fluid domain. Moreover, the structures may have large displacements. The finite element method is used for the space discretization. A fractional time scheme is used for time integration. The main point of the method is that the fluid mesh is fixed and is completely independent of the structure positions. In order to take into account the interface inside the fluid elements, new functions are added in the velocity and pressure fluid fields by using the extended finite element method X-FEM.
Downloads
References
Baaijens F., “A fictitious domain/mortar element method for fluid-structure interaction”, International
Journal for Numerical Methods in Fluids, vol. 35, n° 7, p. 743-761, 2001.
Babu˘ska I., Melenk J., “The partition of unity method”, International Journal for Numerical
Methods in Engineering, vol. 40, n° 4, p. 727-758, 1997.
Bertrand F., Tanguy P., Thibault F., “A three-dimensional fictitious domain method for incompressible
fluid flow problem”, International Journal for Numerical Methods in Fluids,
vol. 25, n° 6, p. 719-736, 1997.
Bordas S., “Extented finite element and level set methods with applications to growth of cracks
and biofilms”, Phd, Northwestern University, 2003.
Brezzi F., “On the existence, uniqueness and approximation af saddle-point problems arising
from Lagrange multipliers”, Revue française d’Automatique, d’Informatique et de
Recherche Opérationnelle (RAIRO) - Analyse Numérique, vol. 8, n° R2, p. 129-151, 1974.
Chessa J., Belytschko T., “An Extended Finite Element Method for Two-Phase Fluids”, ASME
Journal of Applied Mechanics, vol. 70, n° 1, p. 10-17, 2003a.
Chessa J., Smolinski P., Belytschko T., “The extended finite element method (XFEM) for solidification
problems”, International Journal for Numerical Methods in Engineering, vol. 53,
n° 8, p. 1957-1977, 2002.
Chessa J., Wang H., Belytschko T., “On the construction of blending elements for local partition
of unity enriched finite elements”, International Journal for Numerical Methods in
Engineering, vol. 57, n° 7, p. 1015-1038, 2003b.
Glowinski R., Pan T., Hesla T., Joseph D., Périaux J., “A Fictitious Domain Approach to the
Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies:
Application to Particulate Flow”, Journal of Computational Physics, vol. 169, n° 2, p. 363-
, 2001.
Kölke A., Legay A., “An enriched space-time finite element method for fluid-structure interaction
- Part II: Thin flexible structures”, C. M. Soares (ed.), Proceedings of the III European
Conference on Computational Mechanics, june 5-8, Lisbon, 2006.
Laure P.,Megally A., Coupez T., “Collision strategy for the direct simulation of moving fibers in
viscous fluid”, M. Papadrakakis (ed.), International Conference on Computational Methods
for Coupled Problems in Science and Engineering, 2005.
Legay A., Chessa J., Belytschko T., “An Eulerian-Lagrangian Method for Fluid-Structure Interaction
Based on Level Sets”, Computer Methods in Applied Mechanics and Engineering,
vol. 195, n° 17-18, p. 2070-2087, 2006.
Legay A., Wang H., Belytschko T., “Strong and weak arbitrary discontinuities in spectral finite
elements”, International Journal for Numerical Methods in Engineering, vol. 64, n° 8,
p. 991-1008, 2005.
Martinez M., Cueto E., Doblaré M., Chinesta F., “Natural element meshless simulation of flows
involving short fiber suspensions”, Journal of Non-Newtonian Fluid Mechanics, vol. 115,
n° 1, p. 51-78, 2003.
Melenk J., Babu˘ska I., “The partition of unity finite element method: Basic theory and applications”,
Computer Methods in Applied Mechanics and Engineering, vol. 139, n° 1-4,
p. 289-314, 1996.
Moës N., Dolbow J., Belytschko T., “A finite element method for crack growth without remeshing”,
International Journal for NumericalMethods in Engineering, vol. 46, n° 1, p. 131-150,
Peskin C., “The immersed boundary method”, Acta Numerica, vol. 11, p. 479-517, 2002.
Sethian J., “Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science”, Cambridge
University Press, 1999.
Tralli A., Gaudenzi P., “FEM simulation of unsteady viscous incompressible fluid flows”, Third
MIT Conference, 2005a.
Tralli A., Gaudenzi P., “Simulation of unsteady incompressible flows by a fractional-step FEM”,
International Journal for Numerical Methods in Engineering, submitted, 2005b.
Walhorn E., Kölke A., Hübner B., Dinkler D., “Fluid-structure coupling within a monolithic
model involving free surface flows”, Computers and Structures, vol. 83, n° 25-26, p. 2100-
, 2005.
Zhang L., Gerstenberger A., Wang X., Liu W., “Immersed finite element method”, Computer
Methods in Applied Mechanics and Engineering, vol. 193, n° 21-22, p. 2051-2067, 2004.