An enriched finite element approach for prescribed motions of thin immersed structures in a fluid

Authors

  • Antoine Legay Conservatoire National des Arts et Métiers, 2 rue Conté, F-75003 Paris
  • Aldo Tralli Università di Roma “ La Sapienza ”, P.le Aldo Moro, 5, 00185 Roma, Italia

Keywords:

fluide-structure interaction, Euler-Lagrange, thin immersed structures, large displacements, incompatible and overlapped meshes, enrichment (X-FEM), fractional time scheme

Abstract

An Eulerian-Lagrangian fluid-structure coupling approach is presented. The method is dedicated when several thin structures are immersed in a fluid domain. Moreover, the structures may have large displacements. The finite element method is used for the space discretization. A fractional time scheme is used for time integration. The main point of the method is that the fluid mesh is fixed and is completely independent of the structure positions. In order to take into account the interface inside the fluid elements, new functions are added in the velocity and pressure fluid fields by using the extended finite element method X-FEM.

Downloads

Download data is not yet available.

References

Baaijens F., “A fictitious domain/mortar element method for fluid-structure interaction”, International

Journal for Numerical Methods in Fluids, vol. 35, n° 7, p. 743-761, 2001.

Babu˘ska I., Melenk J., “The partition of unity method”, International Journal for Numerical

Methods in Engineering, vol. 40, n° 4, p. 727-758, 1997.

Bertrand F., Tanguy P., Thibault F., “A three-dimensional fictitious domain method for incompressible

fluid flow problem”, International Journal for Numerical Methods in Fluids,

vol. 25, n° 6, p. 719-736, 1997.

Bordas S., “Extented finite element and level set methods with applications to growth of cracks

and biofilms”, Phd, Northwestern University, 2003.

Brezzi F., “On the existence, uniqueness and approximation af saddle-point problems arising

from Lagrange multipliers”, Revue française d’Automatique, d’Informatique et de

Recherche Opérationnelle (RAIRO) - Analyse Numérique, vol. 8, n° R2, p. 129-151, 1974.

Chessa J., Belytschko T., “An Extended Finite Element Method for Two-Phase Fluids”, ASME

Journal of Applied Mechanics, vol. 70, n° 1, p. 10-17, 2003a.

Chessa J., Smolinski P., Belytschko T., “The extended finite element method (XFEM) for solidification

problems”, International Journal for Numerical Methods in Engineering, vol. 53,

n° 8, p. 1957-1977, 2002.

Chessa J., Wang H., Belytschko T., “On the construction of blending elements for local partition

of unity enriched finite elements”, International Journal for Numerical Methods in

Engineering, vol. 57, n° 7, p. 1015-1038, 2003b.

Glowinski R., Pan T., Hesla T., Joseph D., Périaux J., “A Fictitious Domain Approach to the

Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies:

Application to Particulate Flow”, Journal of Computational Physics, vol. 169, n° 2, p. 363-

, 2001.

Kölke A., Legay A., “An enriched space-time finite element method for fluid-structure interaction

- Part II: Thin flexible structures”, C. M. Soares (ed.), Proceedings of the III European

Conference on Computational Mechanics, june 5-8, Lisbon, 2006.

Laure P.,Megally A., Coupez T., “Collision strategy for the direct simulation of moving fibers in

viscous fluid”, M. Papadrakakis (ed.), International Conference on Computational Methods

for Coupled Problems in Science and Engineering, 2005.

Legay A., Chessa J., Belytschko T., “An Eulerian-Lagrangian Method for Fluid-Structure Interaction

Based on Level Sets”, Computer Methods in Applied Mechanics and Engineering,

vol. 195, n° 17-18, p. 2070-2087, 2006.

Legay A., Wang H., Belytschko T., “Strong and weak arbitrary discontinuities in spectral finite

elements”, International Journal for Numerical Methods in Engineering, vol. 64, n° 8,

p. 991-1008, 2005.

Martinez M., Cueto E., Doblaré M., Chinesta F., “Natural element meshless simulation of flows

involving short fiber suspensions”, Journal of Non-Newtonian Fluid Mechanics, vol. 115,

n° 1, p. 51-78, 2003.

Melenk J., Babu˘ska I., “The partition of unity finite element method: Basic theory and applications”,

Computer Methods in Applied Mechanics and Engineering, vol. 139, n° 1-4,

p. 289-314, 1996.

Moës N., Dolbow J., Belytschko T., “A finite element method for crack growth without remeshing”,

International Journal for NumericalMethods in Engineering, vol. 46, n° 1, p. 131-150,

Peskin C., “The immersed boundary method”, Acta Numerica, vol. 11, p. 479-517, 2002.

Sethian J., “Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and Materials Science”, Cambridge

University Press, 1999.

Tralli A., Gaudenzi P., “FEM simulation of unsteady viscous incompressible fluid flows”, Third

MIT Conference, 2005a.

Tralli A., Gaudenzi P., “Simulation of unsteady incompressible flows by a fractional-step FEM”,

International Journal for Numerical Methods in Engineering, submitted, 2005b.

Walhorn E., Kölke A., Hübner B., Dinkler D., “Fluid-structure coupling within a monolithic

model involving free surface flows”, Computers and Structures, vol. 83, n° 25-26, p. 2100-

, 2005.

Zhang L., Gerstenberger A., Wang X., Liu W., “Immersed finite element method”, Computer

Methods in Applied Mechanics and Engineering, vol. 193, n° 21-22, p. 2051-2067, 2004.

Downloads

Published

2007-07-28

How to Cite

Legay, A., & Tralli, A. . (2007). An enriched finite element approach for prescribed motions of thin immersed structures in a fluid. European Journal of Computational Mechanics, 16(2), 145–160. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2019

Issue

Section

Original Article