A substructured FE/XFE method for stress intensity factors computation in an industrial structure

Authors

  • Eric Wyart Cenaero Rue Jean Mermoz 30 B-6041 Gosselies
  • Danielle Coulon Cenaero Rue Jean Mermoz 30 B-6041 Gosselies
  • Philippe Martiny Cenaero Rue Jean Mermoz 30 B-6041 Gosselies
  • Thomas Pardoen Department of Material Science and Processes Université catholique de Louvain B-1348 Louvain-la-Neuve
  • Jean-François Remacle Department of Civil Engineering Université catholique de Louvain B-1348 Louvain-la-Neuve
  • Frédéric Lani Cenaero Rue Jean Mermoz 30 B-6041 Gosselies

DOI:

https://doi.org/10.13052/REMN%20%2016/2007

Keywords:

X-FEM, level set, FETI, substructuring method, domain decomposition

Abstract

The introduction of the eXtended Finite Element Method (X-FEM) into a commercial Finite Element (FE) software was achieved through a substructuring method. For fracture mechanics problems, the domain is decomposed into cracked and safe subdomains which are solved by the XFE-code and the FE-software, respectively. The interface problem is solved using a FETI solver. The new approach is compared with a classical FE-approach in the case of a planar crack in a compressor drum of a turbofan engine.

Downloads

Download data is not yet available.

References

Bordas S., Moran B., « Enriched Finite Elements and Level Sets for Damage Tolerance Assessment

of Complex Structures », Engineering Fracture Mechanics, 2006. in press.

Farhat C., Roux F. X., « A Method of Finite Element Tearing and Interconnecting and its Parallel

Solution Algorithm », International Journal for Numerical Methods in Engineering, vol.

, p. 1205-1227, 1991.

Farhat C., Roux F. X., « Implicit Parallel Processing in Structural Mechanics », Computational

Mechanical Advance, vol. 2, n 1, p. 1-124, 1994. North-Holland.

Hughes T., « Consider a Spherical Cow- Conservation of Geometry in Analysis: Implications

for Computational Methods in Engineering », IMA Workshop: Compatible Spatial Discretizations

for Partial Differential Equations, 2004.

Lesoinne M., Pierson K., « An efficient FETI implementation on distributed shared memory

machine with independent numbers of subdomains and processors », Contemporary Mathematics,

Melenk J. M., Babuška I., « The Partition of Unity Finite Element Method: Basic Theory

and Applications », Computer Methods in Applied Mechanics and Engineering, vol. 139,

p. 289-314, 1996.

Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing

», International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,

Moran B., Shih C. F., « Crack Tip and Associated Domain Integrals from Momentum and

Energy Balance », Engineering Fracture Mechanics, vol. 27, n 6, p. 615-641, 1987.

Saad Y., Iterative methods for sparse linear systems, 2nd edn, SIAM, 2000.

SAMCEF, General purpose finite element analysis package, Technical report,

http://www.samcef.com, 2006.

Sethian J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge

University Press, Cambridge, 1996.

Stolarska M., Chopp D. L., Moës N., Belytschko T., « Modelling Crack Growth by Level Sets

in the Extended Finite Element Method », International Journal for Numerical Methods in

Engineering, vol. 51, p. 943-960, 2001.

Wyart E., Duflot M., Coulon D., Martiny P., Pardoen T., Remacle J.-F., Lani F., « Substructuring

FE-XFE approaches applied to three dimensional crack propagation », Submitted to the

Journal of Computational and Theoretical Applied Mathematics, 2006.

Yau J. F.,Wang S. S., Corten H. T., « A Mixed-Mode Crack Analysis of Isotropic Solids Using

Conservation Laws of Elasticity », Journal of Applied Mechanics, vol. 47, p. 335-341, 1980.

Downloads

Published

2007-11-22

How to Cite

Wyart, E. ., Coulon, D., Martiny, P. ., Pardoen, T. ., Remacle, J.-F. ., & Lani, F. . (2007). A substructured FE/XFE method for stress intensity factors computation in an industrial structure. European Journal of Computational Mechanics, 16(2), 199–212. https://doi.org/10.13052/REMN 16/2007

Issue

Section

Original Article