Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software

Authors

  • Cyrille Dunant EPFL STI IMX Laboratoire de Matériaux de Construction MXG 241, Station 12 CH-1015 Lausanne
  • Phu Nguyen Vinh ENISE Laboratoire de Tribologie et de Dynamique des Systèmes F-42000 Saint-Etienne
  • Mourad Belgasmia EPFL ENAC IS Laboratoire des Structures et des milieux Continus, GC A2 454 (Bâtiment GC) Station 18 CH-1015 Lausanne
  • Stéphane Bordas EPFL ENAC IS Laboratoire des Structures et des milieux Continus, GC A2 454 (Bâtiment GC) Station 18 CH-1015 Lausanne
  • Amor Guidoum EPFL STI IMX Laboratoire de Matériaux de Construction MXG 241, Station 12 CH-1015 Lausanne

DOI:

https://doi.org/10.13052/REMN%20%20162007

Keywords:

XFEM, multiple enrichment, partition of unity, architecture, meshing, meshgeometry interaction, multiple cracks, local mesh refinement, implementation

Abstract

We explore the tradeoffs of using an internal mesher in a XFEM code. We show that it allows an efficient enrichement detection scheme, while retaining the ability to have welladapted meshes. We provide benchmarks highlighting the considerable gains which can be expected from a well designed architecture. The efficiency of the proposed algorithm is shown by solving fracture mechanics problems of densely micro-cracked bodies including adaptive mesh refinement.

Downloads

Download data is not yet available.

References

Areias Pedro M., Belytschko T., “ Analysis of three-Dimensional Crack initiation and propagation

using the extended Finite Element Method”, International Journal for Numerical

Methods in Engineering, vol. 0, n 63, p. 760-788, 3, 2005.

Babuška I., Melenk I., “ Partition of unity method”, International Journal for Numerical Methods

in Engineering, vol. 40, n 4, p. 727-758, 1997.

Belytschko T., Black T., “ Elastic Crack Growth in Finite ElementsWith Minimal Remeshing”,

International Journal for NumericalMethods in Engineering, vol. 45, n 5, p. 601-620, 1999.

Bordas S., Extended Finite Element and level set methods with applications to growth of cracks

and biofilms, PhD thesis, Northwestern University, December, 2003.

Bordas S., Conley J. G., Moran B., Gray J., Nichols E., “ Design paradigm for castings integrating

non-destructive evaluation, casting and damage tolerance simulations”, Engineering

with Computers, n.d.a. submitted.

Bordas S., Duddu R., Moran B., Chopp D. L., “ Extended Finite Element Method for biofilm

growth”, International Journal for Numerical Methods in Engineering, 2005a. submitted.

Bordas S., Legay A., “ Enriched finite element short course: class notes”, The extended finite

element method, a new approach to numerical analysis in mechanics: course notes,

Organized by S. Bordas and A. Legay through the EPFL school of continuing education,

Lausanne, Switzerland, 12, 2005b.

Bordas S., Moran B., “ Extended finite element and level set method for damage tolerance

assessment of complex structures: an object-oriented approach”, Engineering Fracture Mechanics,

n.d.b. in press.

Bordas S., Nguyen V. P., Dunant C., Nguyen-Dang H., Guidoum A., “ An extended finite

element library”, International Journal for Numerical Methods in Engineering, n.d.c. submitted.

Bordas S., Phong L., Duflot M., “ A-posteriori error estimation for enriched finite element

methods”, International Journal for Numerical Methods in Engineering, n.d.d. in progress.

Budyn E., Multiple Crack Growth by the eXtended Finite Element Method, PhD thesis, Northwestern

University, June, 2004.

Chessa J., Smolinski P., Belytschko T., “ The Extended Finite Element Method (X-FEM) for

Solidification Problems”, International Journal for Numerical Methods in Engineering,

vol. 53, p. 1957-1977, 2002.

Chiyokura H., Kimura F., “ Design Of Solids With Free-Form Surfaces”, Computer Graphics,

vol. 3, n 3, p. 289-298, 7, 1983.

Devillers O., Meiser S., Teillaud M., “ Fully dynamic Delaunay triangulation in logarithmic

expected time per operation”, Comput. Geom. Theory Appl., vol. 2, n 2, p. 55-80, 1992.

Frederickson G. N., “ Optimal Algorithms for Tree Partitioning”, p. 169-177, 1991.

Laborde P., Pommier J., Renard Y., Salaun M., “ High order extended finite element method for

cracked domains”, International Journal for Numerical Methods in Engineering, vol. 190,

n 47, p. 6183-6200, 2004.

Larive C., Moyens et Méthodes d’Essai, études et recherches des laboratoires des ponts et

chaussées edn, 1998.

Legrain G., Moës N., Verron E., “ Stress analysis around the crack tips in finite strain problems

using the extended finite element method”, International Journal for Numerical Methods in

Engineering, vol. 63, p. 290-314, 2005.

Mackerle J., “ Object-oriented techniques in FEM and BEM, a bibliography (1996-1999)”,

Finite Elements in Analysis and Design, vol. 36, p. 189-196, 2000.

Magnenat S., “ Enki”, On The Web htp:/tem.epfl.

h, 2000.

Magnenat S., Charrière L.-O., “ Globulation 2”, , On The Web htp:/glob2.ysagon.

om,

Melenk J. M., Babuška I., “ The Partition of Unity Finite Element Method: Basic Theory and

Applications”, Computer Methods in Applied Mechanics and Engineering, vol. 139, p. 289-

, 1996.

Moës N., Dolbow J., Belytschko T., “ A Finite Element Method for Crack Growth Without

Remeshing”, International Journal for Numerical Methods in Engineering, vol. 46, n 1,

p. 131-150, 1999.

Moran B., Shih C. F., “ Crack tip and associated domain integrals from momentum and energy

balance”, Engineering Fracture Mechanics, vol. 127, p. 615-642, 1987.

Nguyen V. P., “ An object oriented approach to the X-FEM with applications to fracture mechanics”,

Master’s thesis, EMMC, 11, 2004.

Nikishkov G. P., Atluri S. N., “ Calculation of fracture mechanics parameters for an arbitrary

three-dimensional crack by the ‘equivalent domain integral’ method”, International Journ

Numer Meth. Engng, vol. 24, p. 851-867, 1987.

Poyet S., Etude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice :

Approche expérimentale et modélisation numérique multi-échelles des dégradations dans

un environnement hydro-chemo-mécanique variable, PhD thesis, Université de Marne-La-

Vallée, 2003.

Remacle J.-F., Karamete B. K., Shephard M., “ Algorithm oriented mesh database”, Ninth

International Meshing Roundtable, Newport Beach, California, p. 349-359, October, 2000.

Sethian J. A., Level Set Methods & Fast Marching Methods: Evolving Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge

University Press, Cambridge, UK, 1999.

Shih C. F., Moran B., Nakamura T., “ Energy release rate along a three-dimensional crack front

in a thermally stressed body”, International Journal of Fracture, vol. 30, p. 79-102, 1986.

Strouboulis T., Copps K., Babuška I., “ The generalized finite element method : An example of

its implementation and illustration of its performance”, International Journal for Numerical

Methods in Engineering, vol. 47, n 8, p. 1401-1417, 2000.

Sukumar N., Prévost J.-H., “ Modeling Quasi-Static Crack Growth with the Extended Finite

Element Method. Part I: Computer Implementation”, International Journal of Solids and

Structures, 8, 2003.

Various, “ Pov Ray”, On The Web : htp:/w.povray.org/, n.d.

Ventura G., Moran B., Belytschko T., “ Dislocations by partition of unity”, International Journal

for Numerical Methods in Engineering, vol. 0, n 62, p. 1463-1487, 1, 2005.

Zimmermann T., Pelerin Y. D., Bomme P., “ Object oriented finite element programming: I.

Governing principles.”, Computer Methods in Applied Mechanics and Engineering, vol. 93,

n 8, p. 291-303, 1992.

Downloads

Published

2007-10-24

How to Cite

Dunant, C. ., Vinh, P. N., Belgasmia, M. ., Bordas, S., & Guidoum, A. . (2007). Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software. European Journal of Computational Mechanics, 16(2), 237–258. https://doi.org/10.13052/REMN 162007

Issue

Section

Original Article