Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software
DOI:
https://doi.org/10.13052/REMN%20%20162007Keywords:
XFEM, multiple enrichment, partition of unity, architecture, meshing, meshgeometry interaction, multiple cracks, local mesh refinement, implementationAbstract
We explore the tradeoffs of using an internal mesher in a XFEM code. We show that it allows an efficient enrichement detection scheme, while retaining the ability to have welladapted meshes. We provide benchmarks highlighting the considerable gains which can be expected from a well designed architecture. The efficiency of the proposed algorithm is shown by solving fracture mechanics problems of densely micro-cracked bodies including adaptive mesh refinement.
Downloads
References
Areias Pedro M., Belytschko T., “ Analysis of three-Dimensional Crack initiation and propagation
using the extended Finite Element Method”, International Journal for Numerical
Methods in Engineering, vol. 0, n 63, p. 760-788, 3, 2005.
Babuška I., Melenk I., “ Partition of unity method”, International Journal for Numerical Methods
in Engineering, vol. 40, n 4, p. 727-758, 1997.
Belytschko T., Black T., “ Elastic Crack Growth in Finite ElementsWith Minimal Remeshing”,
International Journal for NumericalMethods in Engineering, vol. 45, n 5, p. 601-620, 1999.
Bordas S., Extended Finite Element and level set methods with applications to growth of cracks
and biofilms, PhD thesis, Northwestern University, December, 2003.
Bordas S., Conley J. G., Moran B., Gray J., Nichols E., “ Design paradigm for castings integrating
non-destructive evaluation, casting and damage tolerance simulations”, Engineering
with Computers, n.d.a. submitted.
Bordas S., Duddu R., Moran B., Chopp D. L., “ Extended Finite Element Method for biofilm
growth”, International Journal for Numerical Methods in Engineering, 2005a. submitted.
Bordas S., Legay A., “ Enriched finite element short course: class notes”, The extended finite
element method, a new approach to numerical analysis in mechanics: course notes,
Organized by S. Bordas and A. Legay through the EPFL school of continuing education,
Lausanne, Switzerland, 12, 2005b.
Bordas S., Moran B., “ Extended finite element and level set method for damage tolerance
assessment of complex structures: an object-oriented approach”, Engineering Fracture Mechanics,
n.d.b. in press.
Bordas S., Nguyen V. P., Dunant C., Nguyen-Dang H., Guidoum A., “ An extended finite
element library”, International Journal for Numerical Methods in Engineering, n.d.c. submitted.
Bordas S., Phong L., Duflot M., “ A-posteriori error estimation for enriched finite element
methods”, International Journal for Numerical Methods in Engineering, n.d.d. in progress.
Budyn E., Multiple Crack Growth by the eXtended Finite Element Method, PhD thesis, Northwestern
University, June, 2004.
Chessa J., Smolinski P., Belytschko T., “ The Extended Finite Element Method (X-FEM) for
Solidification Problems”, International Journal for Numerical Methods in Engineering,
vol. 53, p. 1957-1977, 2002.
Chiyokura H., Kimura F., “ Design Of Solids With Free-Form Surfaces”, Computer Graphics,
vol. 3, n 3, p. 289-298, 7, 1983.
Devillers O., Meiser S., Teillaud M., “ Fully dynamic Delaunay triangulation in logarithmic
expected time per operation”, Comput. Geom. Theory Appl., vol. 2, n 2, p. 55-80, 1992.
Frederickson G. N., “ Optimal Algorithms for Tree Partitioning”, p. 169-177, 1991.
Laborde P., Pommier J., Renard Y., Salaun M., “ High order extended finite element method for
cracked domains”, International Journal for Numerical Methods in Engineering, vol. 190,
n 47, p. 6183-6200, 2004.
Larive C., Moyens et Méthodes d’Essai, études et recherches des laboratoires des ponts et
chaussées edn, 1998.
Legrain G., Moës N., Verron E., “ Stress analysis around the crack tips in finite strain problems
using the extended finite element method”, International Journal for Numerical Methods in
Engineering, vol. 63, p. 290-314, 2005.
Mackerle J., “ Object-oriented techniques in FEM and BEM, a bibliography (1996-1999)”,
Finite Elements in Analysis and Design, vol. 36, p. 189-196, 2000.
Magnenat S., “ Enki”, On The Web htp:/tem.epfl.
h, 2000.
Magnenat S., Charrière L.-O., “ Globulation 2”, , On The Web htp:/glob2.ysagon.
om,
Melenk J. M., Babuška I., “ The Partition of Unity Finite Element Method: Basic Theory and
Applications”, Computer Methods in Applied Mechanics and Engineering, vol. 139, p. 289-
, 1996.
Moës N., Dolbow J., Belytschko T., “ A Finite Element Method for Crack Growth Without
Remeshing”, International Journal for Numerical Methods in Engineering, vol. 46, n 1,
p. 131-150, 1999.
Moran B., Shih C. F., “ Crack tip and associated domain integrals from momentum and energy
balance”, Engineering Fracture Mechanics, vol. 127, p. 615-642, 1987.
Nguyen V. P., “ An object oriented approach to the X-FEM with applications to fracture mechanics”,
Master’s thesis, EMMC, 11, 2004.
Nikishkov G. P., Atluri S. N., “ Calculation of fracture mechanics parameters for an arbitrary
three-dimensional crack by the ‘equivalent domain integral’ method”, International Journ
Numer Meth. Engng, vol. 24, p. 851-867, 1987.
Poyet S., Etude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice :
Approche expérimentale et modélisation numérique multi-échelles des dégradations dans
un environnement hydro-chemo-mécanique variable, PhD thesis, Université de Marne-La-
Vallée, 2003.
Remacle J.-F., Karamete B. K., Shephard M., “ Algorithm oriented mesh database”, Ninth
International Meshing Roundtable, Newport Beach, California, p. 349-359, October, 2000.
Sethian J. A., Level Set Methods & Fast Marching Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge
University Press, Cambridge, UK, 1999.
Shih C. F., Moran B., Nakamura T., “ Energy release rate along a three-dimensional crack front
in a thermally stressed body”, International Journal of Fracture, vol. 30, p. 79-102, 1986.
Strouboulis T., Copps K., Babuška I., “ The generalized finite element method : An example of
its implementation and illustration of its performance”, International Journal for Numerical
Methods in Engineering, vol. 47, n 8, p. 1401-1417, 2000.
Sukumar N., Prévost J.-H., “ Modeling Quasi-Static Crack Growth with the Extended Finite
Element Method. Part I: Computer Implementation”, International Journal of Solids and
Structures, 8, 2003.
Various, “ Pov Ray”, On The Web : htp:/w.povray.org/, n.d.
Ventura G., Moran B., Belytschko T., “ Dislocations by partition of unity”, International Journal
for Numerical Methods in Engineering, vol. 0, n 62, p. 1463-1487, 1, 2005.
Zimmermann T., Pelerin Y. D., Bomme P., “ Object oriented finite element programming: I.
Governing principles.”, Computer Methods in Applied Mechanics and Engineering, vol. 93,
n 8, p. 291-303, 1992.