Méthodes duales pour le contact frottant
DOI:
https://doi.org/10.13052/16%20%20n°%201Keywords:
contact, friction, equilibrium finite elements, dual formulationAbstract
This paper deals with dual methods for solving unilateral problems with friction. Various variational formulations and their discretizations are presented. The problem is condensed on the contact zone and solved by a Gauss Seidel red-black relaxation algorithm. Numerical results obtained by the dual method are in good agreement with results obtained by classical methods and show better precision on the stress field obtained.
Downloads
References
Bisegna P., Lebon F., Maceri F., « D-PANA : a convergent block-relaxation solution method
for the discretized dual formulation of the Signorini-Coulomb contact problem », Comptes-
Rendus Mathématiques Académie des Sciences Paris, vol. 333, p. 1053-1058, 2001.
Bisegna P., Lebon F., Maceri F., « Relaxation procedures for solving Signorini-Coulomb contact
problems », Advances in Engineering Software, vol. 35, p. 595-600, 2004.
Capatina A., Lebon F., « Remarks on the equilibrium finite element method for frictional
contact problems », New Trends in Continuum Mechanics, M. Mihailescu-Suliciu, Theta,
p. 25-33, 2005.
Capuzzo-Dolcetta I., Matzeu M., « Duality for implicit variational problems and numerical
applications », Numerical Functional Analysis and Optimization, vol. 2, p. 231-265, 1980.
Ciarlet P. G., The finite element method for elliptic problems, North Holland publishing company,
Cocu M., « Existence of solutions of Signorini problems with friction », International Journal
of Engineering Science, vol. 22, p. 567-575, 1984.
Drabla S., Sofonea M., « Analysis of a Signorini Problem with Friction », Journal of Applied
Mathematics, vol. 62, p. 1-18, 1999.
Fraeijs de Veubeke B., « Displacement and equilibrium Models in the Finite Element Method »,
International Journal for Numerical Methods in Engineering, vol. 52, p. 287-342, 2001.
Hackbusch W., « Multigrid method of the second kind », Springer, Berlin, 1982.
Kempeneers M., Beckers P., de Almeida J. M., Pereira O. J. A., « Modèles équilibre pour
l’analyse duale », Revue européenne des éléments finis, vol. 12, p. 737-760, 2003.
Mosco U., Implicit variational problems and quasivariational inequalities, Lecture Notes in
Mathematics, Springer Verlag, 1976.
Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, University
Press, Oxford, 1999.
Raous M., Chabrand P., Lebon F., « Numerical methods for solving unilateral contact problem
with friction », numéro spécial Journal de Mécanique Théorique et Appliquée, vol. 7,
p. 111-128, 1988.
Telega J., « Quasi-static Signorini’s contact problem with friction and duality », International
Series on Numerical Mathematics, vol. 101, p. 199-214, 1991.
Wieckowski Z., Youn S.-K., Moon B.-S., « Stress based finite element analysis of plane plasticity
problems », International Journal for Numerical Methods in Engineering, vol. 44,
p. 1505-1525, 1999.
Zavelani-Rossi A., « An equilibrium approach to plane problems », Computers and Structures,
vol. 79, p. 1877-1895, 2001.