Méthodes duales pour le contact frottant

Authors

  • François Kuss Laboratoire de Mécanique et d’Acoustique et Université de Provence 31 Chemin Joseph Aiguier, F-13402 Marseille cedex 20
  • Frédéric Lebon Laboratoire de Mécanique et d’Acoustique et Université de Provence 31 Chemin Joseph Aiguier, F-13402 Marseille cedex 20

DOI:

https://doi.org/10.13052/16%20%20n°%201

Keywords:

contact, friction, equilibrium finite elements, dual formulation

Abstract

This paper deals with dual methods for solving unilateral problems with friction. Various variational formulations and their discretizations are presented. The problem is condensed on the contact zone and solved by a Gauss Seidel red-black relaxation algorithm. Numerical results obtained by the dual method are in good agreement with results obtained by classical methods and show better precision on the stress field obtained.

Downloads

Download data is not yet available.

References

Bisegna P., Lebon F., Maceri F., « D-PANA : a convergent block-relaxation solution method

for the discretized dual formulation of the Signorini-Coulomb contact problem », Comptes-

Rendus Mathématiques Académie des Sciences Paris, vol. 333, p. 1053-1058, 2001.

Bisegna P., Lebon F., Maceri F., « Relaxation procedures for solving Signorini-Coulomb contact

problems », Advances in Engineering Software, vol. 35, p. 595-600, 2004.

Capatina A., Lebon F., « Remarks on the equilibrium finite element method for frictional

contact problems », New Trends in Continuum Mechanics, M. Mihailescu-Suliciu, Theta,

p. 25-33, 2005.

Capuzzo-Dolcetta I., Matzeu M., « Duality for implicit variational problems and numerical

applications », Numerical Functional Analysis and Optimization, vol. 2, p. 231-265, 1980.

Ciarlet P. G., The finite element method for elliptic problems, North Holland publishing company,

Cocu M., « Existence of solutions of Signorini problems with friction », International Journal

of Engineering Science, vol. 22, p. 567-575, 1984.

Drabla S., Sofonea M., « Analysis of a Signorini Problem with Friction », Journal of Applied

Mathematics, vol. 62, p. 1-18, 1999.

Fraeijs de Veubeke B., « Displacement and equilibrium Models in the Finite Element Method »,

International Journal for Numerical Methods in Engineering, vol. 52, p. 287-342, 2001.

Hackbusch W., « Multigrid method of the second kind », Springer, Berlin, 1982.

Kempeneers M., Beckers P., de Almeida J. M., Pereira O. J. A., « Modèles équilibre pour

l’analyse duale », Revue européenne des éléments finis, vol. 12, p. 737-760, 2003.

Mosco U., Implicit variational problems and quasivariational inequalities, Lecture Notes in

Mathematics, Springer Verlag, 1976.

Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, University

Press, Oxford, 1999.

Raous M., Chabrand P., Lebon F., « Numerical methods for solving unilateral contact problem

with friction », numéro spécial Journal de Mécanique Théorique et Appliquée, vol. 7,

p. 111-128, 1988.

Telega J., « Quasi-static Signorini’s contact problem with friction and duality », International

Series on Numerical Mathematics, vol. 101, p. 199-214, 1991.

Wieckowski Z., Youn S.-K., Moon B.-S., « Stress based finite element analysis of plane plasticity

problems », International Journal for Numerical Methods in Engineering, vol. 44,

p. 1505-1525, 1999.

Zavelani-Rossi A., « An equilibrium approach to plane problems », Computers and Structures,

vol. 79, p. 1877-1895, 2001.

Downloads

Published

2007-09-27

How to Cite

Kuss, F. ., & Lebon, F. (2007). Méthodes duales pour le contact frottant. European Journal of Computational Mechanics, 16(1), 33–51. https://doi.org/10.13052/16 n° 1

Issue

Section

Original Article