Estimation of global time integration errors in rigid body dynamics
Keywords:
time integration, error estimation, adaptive methods, rigid bodies, dynamicsAbstract
The popular Newmark time integration scheme is used in the standard finite difference form as well as in an equivalent Galerkin form for the time integration of rigid body dynamics problems. Estimators for local and global time integration errors are developed. In particular the evaluation of the dual problem for different goals of the error is discussed. A special focus is also on the comparison for linear and nonlinear problems. Finally an adaptive time integration scheme is presented for which both - the local and the global - error estimators are used. The merits and limits are shown for some particular numerical problems.
Downloads
References
Bangerth W. , Rannacher R., “Finite element approximation of the acoustic wave equation:
Error control and mesh adaption”, East-West J. Num. Math., vol. 7, no 4, 1999, p. 263-282.
Cirak F. , Ramm E., “A posteriori error estimation and adaptivity for linear elasticity using
the reciprocal theorem”, Comput. Meth. Appl. Mech. Eng., vol. 156, 1998, p. 351-362.
Dahlquist G.G., “A special stability problem for linear multistep methods”, BIT, vol. 3, 1963,
p. 27-43.
Estep D., “A posteriori error bounds and global error control for approximations of ordinary
differential equations”, SIAM Journal of Numer. Analysis, vol. 32, no 1, 1995, p. 1-48.
Estep D. , French D., “Global error control for the continuous Galerkin finite element method
for ordinary differential equations”, Mathematical Modelling and Numerical Analysis,
vol. 28 no 7, 1994, p. 815-842.
Hairer E., Norsett S.P. , Wanner G., “Solving Ordinary Differential Equations I”, Springer-
Verlag, Berlin Heidelberg New York, 2nd. edition, 1992.
Kizio S. , Schweizerhof K., “Time integration error estimation for continuous Galerkin
schemes”, PAMM - Proceedings in Applied Mathematics and Mechanics, GAMM conference,
Luxemburg, 2005.
Maute A., “Fehlerkontrolle bei Finite-Element-Methoden in der linearen Strukturdynamik”,
Dissertation, Universität Stuttgart, 2001.
Mettler E., “Stabilitätsfragen bei freien Schwingungen mechanischer Systeme”, Ingenieur–
Archiv, vol. 17, 1959, p. 213-228.
Meyer M. , Matthies H. G., “Dual-weighted-residual and nonlinear Galerkin methods in the
simulation of the aeroelastic response of windturbines”, PAMM, Proc. Appl.Math.Mech,
vol. 1, 2002, p. 77-78.
MeyerM. , Matthies H. G., “Nonlinear Galerkin methods for the model reduction of nonlinear
dynamical systems”, Computers and Structures, vol. 81, no 12, 2003, p. 1277-1286.
Neumann J. , Schweizerhof K., “Analysis of Shell Structures under Transient Loading using
Adaptivity in Time and Space”, Proc. ECCM European Conf. on Computational Mechanics,
Munich, 1999.
Neumann J. , Schweizerhof K., “Estimation of the global time error in linear and nonlinear
structural dynamics - comparing Newmark-scheme and Galerkin-method”, Proceedings
International Conference on Adaptive Modeling and Simulation, ADMOS 2003, Göteborg,
Sweden, 2003.
Neumann J., “Anwendung von adaptiven Finite Element Algorithmen auf Probleme der Strukturdynamik“,
Dissertation, University Karlsruhe, 2004.
Newmark N.M., “A numerical method for structural dynamics”, J. Eng. Mech. Div. ASCE,
vol. 85, 1959, p. 67-94.
Riccius J. , Schweizerhof K., “Aspects of hierarchical h–adaptive dynamic analyses”, Proceedings
Third International Conference on Computational Structures Technology, B.H.V.
Topping, editor, Civil-Comp Press, 1996.
Schweizerhof K. , Neumann J., “Adaptive FE Analyses of Shell Structures under Transient
Loading – on the Transfer of variables and on Adaptive Time Stepping Schemes”, Proceedings
ECCOMAS2000 Conf., Barcelona, Spain, 2000.
Schweizerhof K., Neumann J. , Riccius J., “Adaptive Analysis of Plate and Shell Structures
Under Transient Loading”, Error Controlled Adaptive Finite Element Methods, Stein E. et
al. (eds.), J.Wiley & Sons, 2001.
Stoer J. , Burlisch R., Numerische Mathematik 2, Springer-Verlag, Berlin, Heidelberg, 3-rd
edition, 1990.
Wood W.L., Practical Time-stepping Schemes, Clarendon Press, Oxford University Press,