Estimation of global time integration errors in rigid body dynamics

Authors

  • Jens Neumann Institut für Mechanik, Universität Karlsruhe Kaiserstr. 12, D-72128 Karlsruhe, Germany
  • Karl Schweizerhof Institut für Mechanik, Universität Karlsruhe Kaiserstr. 12, D-72128 Karlsruhe, Germany

Keywords:

time integration, error estimation, adaptive methods, rigid bodies, dynamics

Abstract

The popular Newmark time integration scheme is used in the standard finite difference form as well as in an equivalent Galerkin form for the time integration of rigid body dynamics problems. Estimators for local and global time integration errors are developed. In particular the evaluation of the dual problem for different goals of the error is discussed. A special focus is also on the comparison for linear and nonlinear problems. Finally an adaptive time integration scheme is presented for which both - the local and the global - error estimators are used. The merits and limits are shown for some particular numerical problems.

Downloads

Download data is not yet available.

References

Bangerth W. , Rannacher R., “Finite element approximation of the acoustic wave equation:

Error control and mesh adaption”, East-West J. Num. Math., vol. 7, no 4, 1999, p. 263-282.

Cirak F. , Ramm E., “A posteriori error estimation and adaptivity for linear elasticity using

the reciprocal theorem”, Comput. Meth. Appl. Mech. Eng., vol. 156, 1998, p. 351-362.

Dahlquist G.G., “A special stability problem for linear multistep methods”, BIT, vol. 3, 1963,

p. 27-43.

Estep D., “A posteriori error bounds and global error control for approximations of ordinary

differential equations”, SIAM Journal of Numer. Analysis, vol. 32, no 1, 1995, p. 1-48.

Estep D. , French D., “Global error control for the continuous Galerkin finite element method

for ordinary differential equations”, Mathematical Modelling and Numerical Analysis,

vol. 28 no 7, 1994, p. 815-842.

Hairer E., Norsett S.P. , Wanner G., “Solving Ordinary Differential Equations I”, Springer-

Verlag, Berlin Heidelberg New York, 2nd. edition, 1992.

Kizio S. , Schweizerhof K., “Time integration error estimation for continuous Galerkin

schemes”, PAMM - Proceedings in Applied Mathematics and Mechanics, GAMM conference,

Luxemburg, 2005.

Maute A., “Fehlerkontrolle bei Finite-Element-Methoden in der linearen Strukturdynamik”,

Dissertation, Universität Stuttgart, 2001.

Mettler E., “Stabilitätsfragen bei freien Schwingungen mechanischer Systeme”, Ingenieur–

Archiv, vol. 17, 1959, p. 213-228.

Meyer M. , Matthies H. G., “Dual-weighted-residual and nonlinear Galerkin methods in the

simulation of the aeroelastic response of windturbines”, PAMM, Proc. Appl.Math.Mech,

vol. 1, 2002, p. 77-78.

MeyerM. , Matthies H. G., “Nonlinear Galerkin methods for the model reduction of nonlinear

dynamical systems”, Computers and Structures, vol. 81, no 12, 2003, p. 1277-1286.

Neumann J. , Schweizerhof K., “Analysis of Shell Structures under Transient Loading using

Adaptivity in Time and Space”, Proc. ECCM European Conf. on Computational Mechanics,

Munich, 1999.

Neumann J. , Schweizerhof K., “Estimation of the global time error in linear and nonlinear

structural dynamics - comparing Newmark-scheme and Galerkin-method”, Proceedings

International Conference on Adaptive Modeling and Simulation, ADMOS 2003, Göteborg,

Sweden, 2003.

Neumann J., “Anwendung von adaptiven Finite Element Algorithmen auf Probleme der Strukturdynamik“,

Dissertation, University Karlsruhe, 2004.

Newmark N.M., “A numerical method for structural dynamics”, J. Eng. Mech. Div. ASCE,

vol. 85, 1959, p. 67-94.

Riccius J. , Schweizerhof K., “Aspects of hierarchical h–adaptive dynamic analyses”, Proceedings

Third International Conference on Computational Structures Technology, B.H.V.

Topping, editor, Civil-Comp Press, 1996.

Schweizerhof K. , Neumann J., “Adaptive FE Analyses of Shell Structures under Transient

Loading – on the Transfer of variables and on Adaptive Time Stepping Schemes”, Proceedings

ECCOMAS2000 Conf., Barcelona, Spain, 2000.

Schweizerhof K., Neumann J. , Riccius J., “Adaptive Analysis of Plate and Shell Structures

Under Transient Loading”, Error Controlled Adaptive Finite Element Methods, Stein E. et

al. (eds.), J.Wiley & Sons, 2001.

Stoer J. , Burlisch R., Numerische Mathematik 2, Springer-Verlag, Berlin, Heidelberg, 3-rd

edition, 1990.

Wood W.L., Practical Time-stepping Schemes, Clarendon Press, Oxford University Press,

Downloads

Published

2006-06-13

How to Cite

Neumann, J. ., & Schweizerhof, K. . (2006). Estimation of global time integration errors in rigid body dynamics. European Journal of Computational Mechanics, 15(6), 671–698. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2063

Issue

Section

Original Article