An integral process model for high precision composite forming
Keywords:
thermoplastic composites, forming simulations, spring-backAbstract
High precision composite forming implies control of the fibre orientation, residual stresses and wrinkling in the product to be manufactured. Finite Element based process simulations can assist in achieving this right-first-time manufacturing. A first order approximation of the full manufacturing process is presented in a three-step approach: a multilayer Finite Element drape simulation, a micromechanics based stiffness and stress prediction and a Finite Element trimming and spring-back prediction. A wing leading edge stiffener is presented as a validation exercise, based on which the future research topics in Composite Forming are discussed.
Downloads
References
Avetisyan M., Meinders T., Huétink J., “Improvement of Springback Predictability after
forming and trimming operations”, Esaform 2004, p. 77-80.
Boisse P., Gasser A., Hivet G., « Analyses of fabric tensile behaviour: determination of the
biaxial tension–strain surface and their use in forming simulations », Composites: Part A,
Vol. 32, 2001, p. 1395-1414.
Hashin Z., “Analysis of Composite Materials – A Survey”, Journal of Applied Mechanics,
Vol. 50, 1983, p. 481-505.
Hofstee J., De Boer H., Van Keulen F., “Elastic stiffness analysis of thermo-formed plainweave
composite part III: experimental verification”, Composites Science & Technology
Vol. 62, 2002, p. 401-418.
Hsiao S.-W., Kikuchi N., “Numerical analysis and optimal design of composite
thermoforming process”, Computer Methods in Applied Mechanics and Engineering,
Vol. 177, 1999, p. 1-34.
Lamers E.A.D, Wijskamp S., Akkerman R., “Modelling the thermo-elastic properties of
skewed woven fabric reinforced composites”, ECCM 9, 2000, CD proceedings.
Lamers E.A.D, Akkerman R., Wijskamp S., “Fibre Orientation Modelling for Rubber Press
Forming of Thermoplastic Laminates”, International Journal of Forming Processes,
, p. 443-463.
Lamers E.A.D, Wijskamp S., Akkerman R., “Drape Modelling of Multi-Layered
Composites”, Esaform 2003, p. 323-326.
Lamers E.A.D., Akkerman R., Wijskamp S., “Multilayer Drape Modelling of Thermoplastic
Laminates”, submitted to Composites: Part A, 2004.
Lamers E.A.D, Shape Distortions in Fabric Reinforced Composite Products Due to
Processing Induced Fibre Reorientation, PhD Thesis University of Twente, 2004.
Meinders T., Van den Boogaard A. H., Huétink J., “Improvement of implicit finite element
code performance in deep drawing simulations by dynamics contributions”, Journal of
Materials Processing Technology, Vol. 134, 2003, p. 413-420.
Schapery R., “Thermal expansion coefficients of composite materials based on energy
principles”, Journal of Composite Materials, Vol. 2, 1968, p. 380-404.
Spencer A.J.M., “Theory of fabric-reinforced viscous fluids”, Composites: Part A, Vol. 31,
, p. 1311-1321.
Sweeting R., Liu X., Paton R., “Prediction of processing-induced distortion of curved flanged
composite laminates”, Composite Structures, Vol. 57, 2002, p. 79-84.
Van Haaren M.J., Stoker H.C., Van den Boogaard A.H., Huétink J., “The ALE-method with
triangular elements: direct convection of integration point values”, International Journal
for Numerical Methods in Engineering, Vol. 49, 2000, p. 697-720.
Vreede P.T., A finite element method for simulations of 3-dimensional sheet metal forming,
PhD Thesis University of Twente, 1992.
Wiersma H.W., Peeters L.J.B., Akkerman R., “Prediction of springforward in continuousfibre/
polymer L-shaped parts”, Composites Part A, Vol. 29A, 1998, p. 1333-1342.
Wijskamp S., Lamers E.A.D., Akkerman R., “Residual stresses in rubber formed
thermoplastic composites”, Esaform 2003, p. 855-858.
Wijskamp S., Shape Distortions in Composites Forming, PhD thesis University of Twente,
Yu X., Ye L., Mai Y.-W., “Finite Element Spurious Wrinkles on the Thermoforming
Simulation of Woven Fabric Reinforced Composites”, Esaform 2004, p. 325-328.