Etude de l’influence des défauts de petite taille sur le comportement à rupture avec le modèle de Dugdale

Authors

  • Hichème Ferdjani Université Saad Dahlab, Département de Mécanique Route de Soumaa, Blida, Algérie
  • Radhi Abdelmoula LPMTM (UPR-CNRS 9001), Université Paris 13 99, avenue Jean Baptiste Clément, 93430 Villetaneuse
  • Jean-Jacques Marigo LMM (UMR-CNRS 7607), Université Paris 6 4, Place Jussieu case 162, 75252 Paris cedex 5

Keywords:

fracture, Dugdale’s model, scale effect, limit loads

Abstract

The goal of this work is to prove that, within the framework of Fracture Mechanics with Dugdale model of cohesive forces, the defects the size of which are small compared to the material characteristic length are practically without influence on the limit loads of structures. For that, we treat two cases: first, we solve in a closed form the case of a precracked plate, then we compute by using the finite element method the response of a plate with a circular hole.

Downloads

Download data is not yet available.

References

Barenblatt G. I., “The mathematical theory of equilibrium cracks in brittle fracture",

Adv. Appl. Mech., vol. 7, 1962, p. 55-129.

Bourdin B., Francfort G. A., Marigo J.-J., “Numerical experiments in revisited brittle fracture",

J. Mech. Phys. Solids, vol. 48, n° 4, 2000, p. 797-826.

Bui H. D., Mécanique de la Rupture Fragile, Masson, Paris, 1978.

Chaboche J. L., Girard R., Levasseur P., “On the interface debonding models.", Int. J. Damage

Mech., vol. 6, 1997, p. 220-257.

Charlotte M., Francfort G., Marigo J.-J., Truskinovsky L., “Revisiting brittle fracture as an

energy minimization problem : comparison of Griffith and Barenblatt surface energy models",

in A. Benallal (ed.), Proceedings of the Symposium on “Continuous Damage and

Fracture", Elsevier, Paris, 2000, p. 7-12.

Del Piero G., “One-dimensional ductile-brittle transition, yielding, and structured deformations",

Variations of domain and free-boundary problems in solid mechanics (Paris, 1997),

vol. 66 of Solid Mech. Appl., Kluwer Acad. Publ., Dordrecht, 1999, p. 203-210.

Del Piero G., Truskinovsky L., “Macro- and micro-cracking in one-dimensional elasticity",

International Journal of Solids and Structures, vol. 38, n° 6, 2001, p. 1135-1138.

Francfort G. A., Marigo J.-J., “Revisiting brittle fracture as an energy minimization problem",

J. Mech. Phys. Solids, vol. 46, n° 8, 1998, p. 1319-1342.

Griffith A. A., “The phenomena of rupture and flow in solids", Phil. Trans. Roy. Soc. London,

vol. CCXXI-A, 1920, p. 163-198.

Irwin G. R., “Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl.

Mech., Trans. ASME, vol. 24, 1957, p. 361-364.

Laverne J., Marigo J.-J., « Approche globale, minima relatifs et Critère d’Amorçage en Mécanique

de la Rupture », Comptes Rendus Mécanique, vol. 332, 2004, p. 313-318.

Marigo J.-J., Truskinovsky L., “Initiation and propagation of fracture in the models of Griffith

and Barenblatt", Contin. Mech. Thermodyn., vol. 16, n° 4, 2004, p. 391-409.

Muskhelishvili N. I., Some basic problems of mathematical theory of elasticity, 2nd ed.,

P. Noordhoff Ltd, Groningen, 1963.

Salençon J., Calcul à la rupture et analyse limite, Cours de Calcul des Structures Anélastiques,

Presses de l’Ecole Nationale des Ponts et Chaussées, 1983.

Downloads

Published

2006-06-12

How to Cite

Ferdjani, H. ., Abdelmoula, R. ., & Marigo, J.-J. (2006). Etude de l’influence des défauts de petite taille sur le comportement à rupture avec le modèle de Dugdale. European Journal of Computational Mechanics, 15(4), 409–425. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2095

Issue

Section

Original Article