Modélisation numérique du Friction Stir Welding
Keywords:
thermomechanical coupling, stationnary state, residual stressesAbstract
This paper presents a computationnal method of a simulation of the Friction Stir Welding process. The first step of the simulation uses an eulerian approach of the thermomechanical problem. A finite element model is used to establish the temperature field based on a viscoplastic behaviour and experimental data. The second step of the simulation is more original. The calculation is based on a steady state algorithm. It takes into account the whole mechanical history of the material since the algorithm is based on an integration along the trajectories of the particles. Residual state is evaluated for a Friction Stir Welded assembling. Only the stationnary phase of the process is simulated during these two steps which confers a substantial gain of the computation time.
Downloads
References
Askary A., Silling S., London B., Mahoney M., « Modeling and analysis of Friction Stir Welding
processes », in K. Kata, M. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field (Eds.)
Friction Stir Welding Processing, TMS, 2001.
Brooks A.-N., Hughes T.-J.-R., « Streamline Upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations
», Computer Methods in Applied Mechanics and Engineering, vol. 32, p. 199-259,
Chao Y.-J., Qi X., Tang W., « Heat transfer in Friction Stir Welding - experimental and numerical
studies », Transactions of the ASME, vol. 125, p. 138-145, 2003.
Colegrove P.-A., Shercliff H.-R., « Development of Trivex FSW tool Part 1 - two-dimensional
flow modelling and experimental validation Part 2 three-dimensionnal flow modelling », Sc.
and Tech. of Welding and Joining, vol. 9, p. 345-361, 2004.
Dang Van K., Maitournam M.-H., « Steady-state flow in classical elastoplasticity : applications
to repeated rolling and sliding contact », Journal of the Mechanics and Physics of Solids,
vol. 41, p. 1691-1710, 1993.
Fourment L., Guerdoux S., Miles M., Nelson T., « Modelling thermomechanical conditions at
the tool/matrix interface in FSW », Proc. of the fifth int. symp. on FSW, Metz, 2004.
Khandkar M.-Z.-H., Khan J.-A., Reynolds A.-P., « Prediction of temperature distribution and
thermal history during friction stir welding : input torque based model », Sc. and Tech. of
Welding and Joining, vol. 8, p. 165-174, 2003.
Maitournam M. H., Formulation et résolution numérique des problèmes thermoviscoplastiques
en régime permanent, Thèse, École Nationale des Ponts et Chaussées, 1989.
Schmidt H., Hattel J., « Modelling thermomechanical conditions at the tool/matrix interface in
FSW », Proc. of the fifth int. symp. on FSW, Metz, 2004.
Seidel T.-U., Reynolds A.-P., « Two-dimensional FSW process model based on fluids mechanics
», Sc. and Tech. of Welding and Joining, vol. 8, p. 175-183, 2003.
Sheppard T., Jackson A., « Constitutive equations for use in prediction of flow stress during
extrusion of aluminium alloys », Mat. Sc. and Tech., vol. 13, p. 203-209, 1997.
Sheppard T., Wright D.-S., « Determination of flow stress : Part 1 Constitutive equations for
aluminium alloys at elevated temperatures », Metals Technologyp. 215-223, 1979.
Song M., Kovacevic R., « Thermal modeling of FSW in a moving coordinate system and its
validation », Int. J. of Machine Tools and Manufacture, vol. 43, p. 605-615, 2002.
Ulysse P., « Three-dimensional modeling of the friction stir-welding process », Int. J. of Machine
Tools and Manufacture, vol. 42, p. 1549-1557, 2002.
Wang X.-L., Feng Z., David S.-A., Spooner S., Hubbard C.-R., « Neutron diffraction study of
residual stresses in friction stir welds », Sixth international conference on residual stresses,
London, United Kingdom, IOM Communications, 2000.