Relative Young’s modulus identification using elastography

Authors

  • Jérôme Fehrenbach Laboratoire MIP UMR 5640, 118 route de Narbonne, 31062 Toulouse cedex 4
  • Mohamed Masmoudi Laboratoire MIP UMR 5640, 118 route de Narbonne, 31062 Toulouse cedex 4
  • Rémi Souchon Unité de recherche INSERM U556, 151 cours Albert Thomas, 69424 Lyon cedex 03
  • Philippe Trompette Unité de recherche INSERM U556, 151 cours Albert Thomas, 69424 Lyon cedex 03

Keywords:

elastography, medical imaging, topological optimization, inverse problems, elasticity, echography

Abstract

Some biological tissues like the prostate can be considered as a linear isotropic medium, at least for small strains. An interesting problem - from the medical point of view - is to detect heterogeneities where the Young’s modulus takes a different value from the background. A homogeneous medium is considered here, except in some regions where Young’s modulus takes a different value. A method is proposed to reconstruct an approximation of relative Young’s modulus, that is the ratio of Young’s moduli. The main tool is a general method for inverse problems: it is an implementation of Gauss-Newton’s method that uses few memory and few computations, based on the use of direct and adjoint derivative. This method is illustrated with experimental results on a gelatin phantom: the regularization property of Gauss-Newton’s algorithm allows to locate the larger heterogeneities.

Downloads

Download data is not yet available.

References

Catheline S., Wu F., Fink M., “ A solution to diffraction biases in sonoelasticity: the accoustic

impulse technique”, J.Acoust.Soc.Am, vol. 105, p. 2941-2950, 1999.

Doyley M., Meaney P., Bamber J., “ Evaluation of an iterative reconstruction method for quantitative

elastography”, Phys.Med.Biol, vol. 45, p. 1521-1540, 2000.

Doyley M., Srinivasan S., Pendergrass S., Wu Z., Ophir J., “ Comparative evaluation of strainbased

and model-based modulus elastography”, Ultrasound Med.Biol., vol. 31, p. 787-802,

Gao L., Parker K., Alam S., “ Sonoelasticity imaging: theory and experimental verification”,

J.Acoust.Soc.Am, vol. 97, p. 3875-3880, 1995.

Griewank A., Evaluating derivatives: principles and techniques of algorithmic differentiation,

SIAM, 2000.

Kallel F., Bertrand M., “ Tissue elasticity reconstruction using linear perturbation method”,

IEEE Trans.Med.Imaging, vol. 15, p. 299-313, 1996.

Kirsch A., An introduction to the mathematical theory of inverse problems, Springer, 1996.

Krouskop T.,Wheeler T., Kallel F., Garra B., Hall T., “ The elastic moduli of breast and prostate

tissues under compression”, Ultrasonic imaging, vol. 20, p. 260-274, 1998.

Ophir J., Alam S., Garra B., Kallel F., Konofagou E., Krouskop T., Merritt C., Righetti R.,

Souchon R., Srinivasan S., Varghese T., “ Elastography: Imaging the Elastic Properties of

Soft Tissues with Ultrasound”, J.Med.Ultrasonics, vol. 29, p. 155-171, 2002.

Ophir J., Cespedes I., Ponnekanti H., Yazdi Y., Li X., “ Elastography: a quantitative method for

imaging the elasticity of biological tissues”, Ultrasonic imaging, vol. 13, p. 111-134, 1991.

Souchon R., Rouvière O., Gelet A., Detti V., Srinivasan S., Ophir J., Chapelon JY., “ Visualisation

of HIFU lesions using elastography of the human prostate in vivo: preliminary results”,

Ultrasound Med.Biol., vol. 29, n 7, p. 1007-1015, 2003.

Souchon R., Soualmi L., Bertrand M., Chapelon JY., Kallel F., Ophir J., “ Ultrasonic elastography

using sector scan imaging and a radial compression”, Ultrasonics, vol. 40, n 1-8,

p. 867-871, 2002.

Downloads

Published

2006-06-05

How to Cite

Fehrenbach, J. ., Masmoudi, M. ., Souchon, R. ., & Trompette, P. (2006). Relative Young’s modulus identification using elastography. European Journal of Computational Mechanics, 15(1-3), 167–174. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2127

Issue

Section

Original Article

Most read articles by the same author(s)