Propagation multimodale dans les systèmes périodiques couplés
Keywords:
periodic system, substructure, wave mode, waveguide, nite element model, coupling element, Lagrange multiplier, diffusion matrix, excitation sourcesAbstract
This paper presents the study of the wide band vibratory behavior of coupled elastic and dissipative complex periodic systemseach system is composed, along a specic direction, of identical substructures. Considering a multi-mode propagation model, the dynamics of each system is formulated by numerically expressing the kinematic variables (displacements, forces) from the waves propagating along the direction of periodicity. In this way, a coupling model for several systems connected by an elastic element, which in particular can be submitted to external excitation sources, is formulated.
Downloads
References
Brillouin L., Wave Propagation in Periodic Structures, Mc Graw Hill Publishing Compagny,
New York, 1946.
Graff K. G., Wave Motion in Elastic Solids, Oxford University Press, London, 1991.
Mencik J.-M., Ichchou M. N., « Multi-mode propagation and diffusion in structures through
nite elements », European Journal of Mechanics - A/Solids, vol. 24, p. 877-898, 2005.
Ohayon R., Sampaio R., Soize C., « Dynamic substructuring of damped structures using singular
value decomposition », Transactions of the ASME, vol. 64, p. 292-298, 1997.
Yong Y., Lin Y. K., « Propagation of decaying waves in periodic and piecewise periodic structures
of nite length », Journal of Sound and Vibration, vol. 129, p. 99-118, 1989.
Zhong W. X., Williams F.W., « On the direct solution of wave propagation for repetitive structures
», Journal of Sound and Vibration, vol. 181 p. 485-501, 1995.
Zienkiewicz O. C., Taylor R. L., The Finite Element Method (rst volume), Butterworth-
Heinemann, fth edition, Oxford, 2000.