The Impact of Flexural/Torsional Coupling on the Stability of Symmetrical Laminated Plates
DOI:
https://doi.org/10.13052/ejcm2642-2085.3251Keywords:
Static instability, buckling, coupling, natural frequency, critical load, Rayleigh, Ritz methodAbstract
In this study, we will evaluate the effect of bending/torsion coupling on the buckling instability and free vibration behavior of symmetrical laminated plates. We will load these plates in-plane with bi-axial or uni-axial, uniform or non-uniform mechanical loads. To quantify this behavior, we’ll compare the results obtained with those of specially orthotropic symmetrical plates (where bending/torsion coupling is absent). A parametric study will be carried out by varying the plate’s aspect ratio, anisotropy ratio and/or lamination angle. The aim of these studies is to construct a planar loading margin for the plate while remaining elastically stable, and to determine a physically admissible limit where we can approximate the behavior of symmetrical laminates to that of specially orthotropic plates (easy to study). We will base ourselves on a Rayleigh-Ritz energy formulation of the problem because of the difficulty of finding closed-form solutions. Following validation of this formulation, a numerical survey of the results will be carried out to quantify the effect of bending/torsion coupling on the instability of this type of plate. Various conditions on the plate boundaries will be used.
Downloads
References
Autar K. Kaw; Mechanics of composite materials second edition; (2006), International Standard Book Number-13: 978-0-8493-1343-1.
J. N. Reddy (2003) ; Mechanics of Laminated Composite Plates and Shells, 2nd Edition; eBook ISBN: 9780429210693; https://doi.org/10.1201/b12409.
Kadoli R. and Ganesan, N. (2006). Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition. Journal of Sound and Vibration, 289(3), 450–480. http://doi:10.1016/j.jsv.2005.02.034.
Do, V. N. V. and Lee C. H. (2017). Thermal buckling analyses of FGM sandwich plates using the improved radial point interpolation mesh-free method. Composite Structures, 177, 171 186. http://doi:10.1016/j.compstruct.2017.06.054.
Adhikari, B., Dash P. and Singh B. N. (2020). Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Composite Structures, 112597. http://doi:10.1016/j.compstruct.2020.112597.
Singh, S. J. and Harsha S. P. (2020). Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: A semi-analytical approach. Thin-Walled Structures, 150, 106668. http://doi:10.1016/j.tws.2020.106668.
Adim, B., Daouadji T. H., Abbes B. and Rabahi, A. (2016). Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory. Mechanics & Industry, 17(5), 512. http://doi:10.1051/meca/2015112.
Ounis, H., Tati, A., and Benchabane, A. (2014). Thermal buckling behavior of laminated composite plates: a finite-element study. Frontiers of Mechanical Engineering, 9(1), 41–49. http://doi:10.1007/s11465-014-0284-z.
Civalek Ö., Dastjerdi, S. and Akgöz B. (2020). Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines, 1–18. http://doi:10.1080/15397734.2020.1766494.
Nguyen-Van H., Mai-Duy N., Karunasena W. and Tran-Cong T. (2011). Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Computers & Structures, 89(7–8), 612–625. http://doi:10.1016/j.compstruc.2011.01.005.
Akavci S. S. (2007). Buckling and Free Vibration Analysis of Symmetric and Antisymmetric Laminated Composite Plates on an Elastic Foundation. Journal of Reinforced Plastics and Composites, 26(18), 1907–1919. http://doi:10.1177/0731684407081766.
Golmakani M. E., Esmaeilzadeh, M., Sadeghian, M. and Zeighami, V. (2021). Buckling analysis of CNTRC plates in the thermal environment based on combination of the incremental load technique and dynamic relaxation method. International Journal for Computational Methods in Engineering Science and Mechanics, 22(4), 316–332. http://doi:10.1080/15502287.2021.1882615.
Civalek, Ö. and Avcar, M. (2020). Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers. http://doi:10.1007/s00366-020-01168-8.
Khandelwal R. P., Chakrabarti A. and Bhargava P. (2013). Vibration and buckling analysis of laminated sandwich plate having soft core. International Journal of Structural Stability and Dynamics, 13(08), 1350034. http://doi:10.1142/s021945541350034x.
Kurpa, L. and Shmatko, T. (2020). Buckling and free vibration analysis of functionally graded sandwich plates and shallow shells by the Ritz method and the R-functions theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440622093630. http://doi:10.1177/0954406220936304.
Yekani, S. M. A. and Fallah, F. (2020). A Levy solution for bending, buckling, and vibration of Mindlin micro plates with a modified couple stress theory. SN Applied Sciences, 2(12). http://doi:10.1007/s42452-020-03939-w.
Peng, L. X., Liew, K. M., and Kitipornchai, S. (2006). Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. Journal of Sound and Vibration, 289(3), 421–449. http://doi:10.1016/j.jsv.2005.02.023.
Festus Chukwudi Onyeka, Chidobere David Nwa-David, Thompson Edozie Okeke, (2022); Study on Stability Analysis of Rectangular Plates Section Using a Three-Dimensional Plate Theory with Polynomial Function; Journal of Engineering Research and Sciences, 1(4): 28–37, 2022; https://dx.doi.org/10.55708/js0104004.
Trabelsi S., Zghal, S. and Dammak F. (2020). Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5). http://doi:10.1007/s40430-020-02314-5.
Rasid, Z. A. and Yahaya H. (2014). The Thermal Instability Analysis of Functionally Graded Carbon Nanotube Composite Plates Using Finite Element Method. Applied Mechanics and Materials, 695, 285–288. http://doi:10.4028/www.scientific.net/amm.695.285.
Bouazza M., Becheri T., Boucheta A. and Benseddiq N. (2016). Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler-Pasternak elastic foundation. International Journal for Computational Methods in Engineering Science and Mechanics, 17(5–6), 362–373. http://doi:10.1080/15502287.2016.1231239.
Lal, A., Kulkarni N. M. and Singh B. N. (2015). Stochastic Thermal Post Buckling Response of Elastically Supported Laminated Piezoelectric Composite Plate Using Micromechanical approach. Curved and Layered Structures, 2(1). http://doi:10.1515/cls-2015-0019.
Foroutan K., Shaterzadeh, A. and Ahmadi H. (2019). Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells. Applied Mathematical Modelling. http://doi:10.1016/j.apm.2019.07.062.
Qi Y. N., Dai H. L. and Deng S.-T. (2020). Thermoelastic analysis of stiffened sandwich doubly curved plate with FGM core under low velocity impact. Composite Structures, 253, 112826. http://doi:10.1016/j.compstruct.2020.112826.
Trabelsi S., Zghal S. and Dammak F. (2020). Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5). http://doi:10.1007/s40430-020-02314-5.
Do V. N. V. and Lee C.-H. (2017). Thermal buckling analyses of FGM sandwich plates using the improved radial point interpolation mesh-free method. Composite Structures, 177, 171–186. http://doi:10.1016/j.compstruct.2017.06.054.
Li D., Deng Z., Chen G., Xiao H. and Zhu L. (2017). Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core. Composite Structures, 169, 29–41. http://doi:10.1016/j.compstruct.2017.01.026.
Abdoun F. and Azrar L. (2020). Thermal buckling and vibration of laminated composite plates with temperature dependent properties by an asymptotic numerical method. International Journal for Computational Methods in Engineering Science and Mechanics, 1–15. http://doi:10.1080/15502287.2020.1729899.
Singh S. J. and Harsha S. P. (2020). Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: A semi-analytical approach. Thin-Walled Structures, 150, 106668. http://doi:10.1016/j.tws.2020.106668.
Yamna Belkhodja, Mohamed El Amine Belkhodja, Hamida Fekirini, Djamel Ouinas (2023); New quasi-three-, and two-dimensional trigonometric-cubic monomial HSDT for thermal buckling and thermo-mechanical bending analyses of FGM symmetrical/non-symmetrical sandwich plates with hard/soft core; Composite Structures (304) 116402, https://doi.org/10.1016/j.compstruct.2022.116402.
Supen Kumar Sah, Anup Ghosh (2022); Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates; Composite Structures (279) 114795, https://doi.org/10.1016/j.compstruct.2021.114795.
Al-Furjan M. S. H., Farrokhian A., Keshtegar B., Kolahchi R. and Trung N.-T. (2020). Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones. Aerospace Science and Technology, 107, 106259. http://doi:10.1016/j.ast.2020.106259.
Robert M. Jones (1999); Mechanics of composite materials second edition; International Standard Book Number-13: 978-1-56032-712-7.
Thai H.-T., Park M. and Choi, D.-H. (2013). A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation. International Journal of Mechanical Sciences, 73, 40–52. http://doi:10.1016/j.ijmecsci.2013.03.017.
Shahgholian D., Safarpour M., Rahimi A. R. and Alibeigloo, A. (2020). Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method. Acta Mechanica. http://doi:10.1007/s00707-020-02616-8.
Malikan M. and Eremeyev V. A. (2020). Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method. Materials Research Express. http://doi:10.1088/2053-1591/ab691c.
Chen X., Nie G. and Wu Z. (2020). Application of Rayleigh-Ritz formulation to thermomechanical buckling of variable angle tow composite plates with general in-plane boundary constraint. International Journal of Mechanical Sciences, 106094. http://doi:10.1016/j.ijmecsci.2020.106094.
Chwal M. and Muc, A. (2019). Buckling and Free Vibrations of Nanoplates - Comparison of Nonlocal Strain and Stress Approaches. Applied Sciences, 9(7), 1409. http://doi:10.3390/app9071409.
J. F. Mandell (1968); Experimental Investigation of the Buckling of Anisotropic Fiber Reinforced Plastic Plates; Air Force Materials Laboratory Technical Report AFML-TR-68-281.